×

A functor for constructing \(R\)-matrices in the category \(\mathcal{O}\) of Borel quantum loop algebras. (English) Zbl 07808988

Summary: We tackle the problem of constructing \(R\)-matrices for the category \(\mathcal{O}\) associated to the Borel subalgebra of an arbitrary untwisted quantum loop algebra \(U_{q} ({\mathfrak{g}})\). For this, we define an invertible exact functor \(\mathcal{F}_{q}\) from the category \(\mathcal{O}\) linked to \(U_{q^{-1}}({\mathfrak{g}})\) to the one linked to \(U_{q}({\mathfrak{g}})\). This functor \(\mathcal{F}_{q}\) is compatible with tensor products, preserves irreducibility, and interchanges the subcategories \(\mathcal{O}^{+}\) and \(\mathcal{O}^{-}\) of D. Hernandez and B. Leclerc [Algebra Number Theory 10, No. 9, 2015–2052 (2016; Zbl 1390.17025)]. We construct \(R\)-matrices for \(\mathcal{O}^{+}\) by applying \(\mathcal{F}_{q}\) on the braidings already found for \(\mathcal{O}^{-}\) by D. Hernandez [Represent. Theory 26, 179–210 (2022; Zbl 1502.17013)]. We also use the factorization of the latter intertwiners in terms of stable maps to deduce an analogous factorization for our new braidings. We finally obtain as byproducts new relations for the Grothendieck ring \(K_{0}(\mathcal{O})\) as well as a functorial interpretation of a remarkable ring isomorphism \(K_{0}(\mathcal{O}^{+}) \simeq K_{0} (\mathcal{O}^{-})\) of Hernandez-Leclerc [loc. cit.].

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
13F60 Cluster algebras
16D90 Module categories in associative algebras
18M15 Braided monoidal categories and ribbon categories
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations

References:

[1] V. V.Bazhanov, S. L.Lukyanov, and A. B.Zamolodchikov, Higher‐level eigenvalues of Q‐operators and Schrödinger equation, Adv. Theor. Math. Phys.7 (2003), no. 4, 711-725. · Zbl 1055.81521
[2] J.Beck, Braid group action and quantum affine algebras, Comm. Math. Phys.165 (1994), no. 3, 555-568. · Zbl 0807.17013
[3] J.Beck, V.Chari, and A.Pressley, An algebraic characterization of the affine canonical basis, Duke Math. J.99 (1999), no. 3, 455-487. · Zbl 0964.17013
[4] H.Boos, M.Jimbo, T.Miwa, F.Smirnov, and Y.Takeyama, Hidden Grassmann structure in the XXZ model II: creation operators, Comm. Math. Phys.286 (2009), no. 3, 875-932. · Zbl 1173.82003
[5] L.Bittmann, Quantum Grothendieck rings as quantum cluster algebras, J. Lond. Math. Soc. (2)103 (2021), no. 1, 161-197. · Zbl 1472.13039
[6] V.Chari, Minimal affinizations of representations of quantum groups: the rank 2 case, Publ. Res. Inst. Math. Sci.31 (1995), no. 5, 873-911. · Zbl 0855.17010
[7] V.Chari and D.Hernandez, Beyond Kirillov-Reshetikhin modules, Quantum affine algebras, extended affine lie algebras, and their applications, Contemp. Math., vol. 506, Amer. Math. Soc., Providence, RI, 2010, pp. 49-81. · Zbl 1277.17009
[8] V.Chari and A.Pressley, Quantum affine algebras, Comm. Math. Phys.142 (1991), no. 2, 261-283. · Zbl 0739.17004
[9] V.Chari and A.Pressley, Quantum affine algebras and their representations, Representations of groups (Banff, AB, 1994), CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 59-78. · Zbl 0855.17009
[10] I.Damiani, \(La R\)‐matrice pour les algèbres quantiques de type affine non tordu, Ann. Sci. École Norm. Sup. (4)31 (1998), no. 4, 493-523. · Zbl 0911.17005
[11] I.Damiani, From the Drinfeld realization to the Drinfeld-Jimbo presentation of affine quantum algebras: injectivity, Publ. Res. Inst. Math. Sci.51 (2015), no. 1, 131-171. · Zbl 1394.17036
[12] V. G.Drinfel’d, A new realization of Yangians and of quantum affine algebras, Soviet Math. Dokl.36 (1988), no. 2, 212-216. · Zbl 0667.16004
[13] V. G.Drinfel’d, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR283 (1985), no. 5, 1060-1064. · Zbl 0588.17015
[14] J. T.Ding and I.Frenkel, Isomorphism of two realizations of quantum affine algebra \(U_q(\widehat{\mathfrak{gl}(n)})\), Comm. Math. Phys.156 (1993), no. 2, 277-300. · Zbl 0786.17008
[15] P. I.Etingof, I.Frenkel, and A. A.Kirillov, Lectures on representation theory and Knizhnik-Zamolodchikov equations, Mathematical Surveys and Monographs, vol. 58, Amer. Math. Soc., Providence, RI, 1998. · Zbl 0903.17006
[16] P. I.Etingof, S.Gelaki, D.Nikshych, and V.Ostrik, Tensor categories, Mathematical Surveys and Monographs, vol. 205, Amer. Math. Soc., Providence, RI, 2015. · Zbl 1365.18001
[17] R.Fujita, Geometric realization of Dynkin quiver type quantum affine Schur-Weyl duality, Int. Math. Res. Not. (2020), no. 22, 8353-8386. · Zbl 1479.16009
[18] E.Frenkel and D.Hernandez, Baxter’s relations and spectra of quantum integrable models, Duke Math. J.164 (2015), no. 12, 2407-2460. · Zbl 1332.82022
[19] E.Frenkel and D.Hernandez, Spectra of quantum KdV Hamiltonians, Langlands duality, and affine opers, Comm. Math. Phys.362 (2018), no. 2, 361-414. · Zbl 1397.81060
[20] E.Frenkel, D.Hernandez, and N.Reshetikhin, Folded quantum integrable models and deformed W‐algebras, Lett. Math. Phys.112 (2022), no. 4. · Zbl 1513.81077
[21] E.Frenkel and E.Mukhin, Combinatorics of \(q\)‐characters of finite‐dimensional representations of quantum affine algebras, Comm. Math. Phys.216 (2001), no. 1, 23-57. · Zbl 1051.17013
[22] E.Frenkel and N.Reshitikhin, The \(q\)‐characters of representations of quantum affine algebras and deformations of \(\mathcal{W} \)‐algebras, Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), Contemp. Math., vol. 248, Amer. Math. Soc., Providence, RI, 1999, pp. 163-205. · Zbl 0973.17015
[23] L. D.Faddeev, N.Reshetikhin, and L. A.Takhtajan, Quantization of Lie groups and Lie algebras, Algebraic Analysis, vol. 1, Academic Press, Boston, MA, 1988, pp. 129-139. · Zbl 0677.17010
[24] M.Finkelberg and A.Tsymbaliuk, Multiplicative slices, relativistic Toda and shifted quantum affine algebras, Representations and nilpotent orbits of Lie algebraic systems, Progr. Math., vol. 330, Birkhäuser/Springer, Cham, 2019, pp. 133-304. · Zbl 1436.17021
[25] D.Hernandez, The Kirillov-Reshetikhin conjecture and solutions of T‐systems, J. Reine Angew. Math.596 (2006), 63-87. · Zbl 1160.17010
[26] D.Hernandez, On minimal affinizations of representations of quantum groups, Comm. Math. Phys.276 (2007), no. 1, 221-259. · Zbl 1141.17011
[27] D.Hernandez, Avancées concernant les \(R\)‐matrices et leurs applications [d’après Maulik-Okounkov, Kang-Kashiwara-Kim-Oh,... ], Séminaire Bourbaki, vol. 2016/2017, Exposés 1120-1135, Astérisque (2019), no. 407, Exp. No. 1129, 297-331. · Zbl 1483.17011
[28] D.Hernandez, Representations of shifted quantum affine algebras, Int. Math. Res. Not. (2023), no. 13, 11035-11126. · Zbl 1532.17013
[29] D.Hernandez, Stable maps, \(Q\)‐operators and category \(\mathcal{O} \), Represent. Theory26 (2022), 179-210. · Zbl 1502.17013
[30] D.Hernandez and M.Jimbo, Asymptotic representations and Drinfeld rational fractions, Compos. Math.148 (2012), no. 5, 1593-1623. · Zbl 1266.17010
[31] D.Hernandez and B.Leclerc, A cluster algebra approach to \(q\)‐characters of Kirillov-Reshetikhin modules, J. Eur. Math. Soc. (JEMS)18 (2016), no. 5, 1113-1159. · Zbl 1405.17028
[32] D.Hernandez and B.Leclerc, Cluster algebras and category \(\mathcal{O}\) for representations of Borel subalgebras of quantum affine algebras, Algebra Number Theory10 (2016), no. 9, 2015-2052. · Zbl 1390.17025
[33] V.Kac, Infinite dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. · Zbl 0716.17022
[34] S. J.Kang, M.Kashiwara, and M.Kim, Symmetric quiver Hecke algebras and \(R\)‐matrices of quantum affine algebras, Invent. Math.211 (2018), no. 2, 591-685. · Zbl 1407.81108
[35] M.Kashiwara, Crystal bases and categorifications: Chern medal lecture, Proceedings of the International Congress of Mathematicians, Rio de Janeiro, 2018, vol. 1, Plenary lectures, World Scientific Publishing, Hackensack, NJ, 2018, pp. 249-258. · Zbl 1441.17014
[36] M.Kashiwara, M.Kim, and S. J.Oh, Monoidal categories of modules over quantum affine algebras of type A and B, Proc. Lond. Math. Soc. (3)118 (2019), no. 1, 43-77. · Zbl 1472.17054
[37] M.Kashiwara, M.Kim, S. J.Oh, and E.Park, Categories over quantum affine algebras and monoidal categorification, Proc. Jap. Acad. Ser. A, Math. Sci.97 (2021), no. 7, 39-44. · Zbl 1511.17037
[38] M.Kashiwara, M.Kim, S. J.Oh, and E.Park, Monoidal categorification and quantum affine algebras II, arXiv:2103.10067.
[39] D.Masoero, A.Raimondo, and D.Valeri, Bethe ansatz and the spectral theory of affine Lie algebra‐valued connections I: the simply‐laced case, Comm. Math. Phys.344 (2016), no. 3, 719-750. · Zbl 1347.82011
[40] D.Masoero, A.Raimondo, and D.Valeri, Bethe ansatz and the spectral theory of affine Lie algebra‐valued connections II: the non simply‐laced case, Comm. Math. Phys.349 (2017), no. 3, 1063-1105. · Zbl 1359.82010
[41] E.Mukhin and A.Varchenko, Populations of solutions of the XXX Bethe equations associated to Kac-Moody algebras, Infinite‐dimensional aspects of representation theory and applications, Contemp. Math., vol. 392, Amer. Math. Soc., Providence, RI, 2005, pp. 95-102. · Zbl 1173.82316
[42] E.Mukhin and A.Varchenko, Discrete Miura Opers and solutions of the Bethe ansatz equations, Comm. Math. Phys.256 (2005), no. 3, 565-588. · Zbl 1127.82020
[43] D.Maulik and A.Okounkov, Quantum groups and quantum cohomology, Astérisque408 (2019). · Zbl 1422.14002
[44] Y.Wei and Y.Zou, Inverses of Cartan matrices of Lie algebras and Lie superalgebras, Linear Algebra Appl.521 (2017), 283-297. · Zbl 1359.15004
[45] H.Zhang, Yangians and Baxter’s relations, Lett. Math. Phys.110 (2020), no. 8, 2113-2141. · Zbl 1476.17011
[46] H.Zhang, Length‐two representations of quantum affine superalgebras and Baxter operators, Comm. Math. Phys.358 (2018), no. 2, 815-862. · Zbl 1409.17009
[47] H.Zhang, Fundamental representations of quantum affine superalgebras and R‐matrices, Transform. Groups22 (2017), no. 2, 559-590. · Zbl 1425.17024
[48] H.Zhang, RTT realization of quantum affine superalgebras and tensor products, Int. Math. Res. Not. IMRN (2016),no. 4, 1126-1157. · Zbl 1405.17034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.