×

Quantum Grothendieck rings as quantum cluster algebras. (English) Zbl 1472.13039

D. Hernandez and B. Leclerc [Duke Math. J. 154, No. 2, 265–341 (2010; Zbl 1284.17010)] first realized that the Grothendieck ring of a certain monoidal subcategory \(\mathcal{C}_1\) of the category \(\mathcal{C}\) of finite-dimensional \(U_q(L\mathfrak{g})\)-modules had the structure of a cluster algebra. They thus proved that the Grothendieck ring of a certain monoidal subcategory \(\mathcal{O}^+_\mathbb{Z}\) of the category \(\mathcal{O}\) had a cluster algebra structure of infinite rank, for which one can take as initial seed the classes of the positive prefundamental representations. That is, the category \(\mathcal{O}^+_{\mathbb{Z}}\) contains the finite-dimensional representations and the positive prefundamental representations whose spectral parameter satisfy an integrality condition. Moreover, certain exchange relations, such as the Baxter relation, coming from cluster mutations appear naturally.
In order to construct of quantum Grothendieck ring for the category \(\mathcal{O}\) of representations of the quantum loop algebra introduced by D. Hernandez and M. Jimbo [Compos. Math. 148, No. 5, 1593–1623 (2012; Zbl 1266.17010)], previous approaches were no longer applicable. The geometrical approach of H. Nakajima [Ann. Math. (2) 160, No. 3, 1057–1097 (2005; Zbl 1140.17015)] and M. Varagnolo and E. Vasserot [Prog. Math. 210, 345–365 (2003; Zbl 1162.17307)] (in which the \(t\)-graduation naturally comes from the graduation of cohomological complexes) requires a geometric interpretation of the objects in the category \(\mathcal{O}\), which is yet to be found. The more algebraic approach consisting of realizing the (quantum) Grothendieck ring as an invariant under a sort of Weyl symmetry, which allowed D. Hernandez [Adv. Math. 187, No. 1, 1–52 (2004; Zbl 1098.17009)] to define a quantum Grothendieck ring of finite-dimensional representations in non-simply laced types, is again no longer relevant for the category \(\mathcal{O}\). However, only the cluster algebra approach yields results in this context.
The author constructs a quantum Grothendieck ring for a certain monoidal subcategory of the category \(\mathcal{O}\) (Theorem 5.2.1, page 180). She uses the cluster algebra structure of the Grothendieck ring of this category to define the quantum Grothendieck ring as a quantum cluster algebra. When the underlying simple Lie algebra is of type \(A\), she proves that this quantum Grothendieck ring contains the quantum Grothendieck ring of the category of finite-dimensional representations of the associated quantum affine algebra (Theorem 8.1.1, page 193).

MSC:

13F60 Cluster algebras
17B37 Quantum groups (quantized enveloping algebras) and related deformations
16T20 Ring-theoretic aspects of quantum groups
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)

References:

[1] T.Akasaka and M.Kashiwara, ‘Finite‐dimensional representations of quantum affine algebras’, Publ. Res. Inst. Math. Sci. 335 (1997) 839-867. · Zbl 0915.17011
[2] R.Baxter, ‘Partition function of the eight‐vertex lattice model’, Ann. Physics70 (1972) 193-228. · Zbl 0236.60070
[3] V. V.Bazhanov, S. L.Lukyanov and A. B.Zamolodchikov, ‘Integrable structure of conformal field theory. III. The Yang-Baxter relation’, Comm. Math. Phys.200 (1999) 297-324. · Zbl 1057.81531
[4] A.Berenstein, S.Fomin and A.Zelevinsky, ‘Cluster algebras. III. Upper bounds and double Bruhat cells’, Duke Math. J. 1261 (2005) 1-52. · Zbl 1135.16013
[5] A.Berenstein and J.Greenstein, ‘Double canonical bases’, Adv. Math.316 (2017) 381-468. · Zbl 1434.17018
[6] A.Berenstein and A.Zelevinsky, ‘Quantum cluster algebras’, Adv. Math.195 (2005) 405-455. · Zbl 1124.20028
[7] L.Bittmann, ‘Asymptotics of standard modules of quantum affine algebras’, Algebr. Represent. Theory (2018) 1-29.
[8] J.Bowman, ‘Irreducible modules for the quantum affine algebra \(U_q ( \mathfrak{g} )\) and its Borel subalgebra \(U_q ( \mathfrak{g} )^{\geqslant 0} \)’, J. Algebra316 (2007) 231-253. · Zbl 1132.17005
[9] T.Bridgeland, ‘Quantum groups via Hall algebras of complexes’, Ann. of Math. (2)177 (2013) 739-759. · Zbl 1268.16017
[10] G.Cerulli Irelli, B.Keller, D.Labardini‐Fragoso and P.‐G.Plamondon, ‘Linear independence of cluster monomials for skew‐symmetric cluster algebras’, Compos. Math.149 (2013) 1753-1764. · Zbl 1288.18011
[11] V.Chari and J.Greenstein, ‘Filtrations and completions of certain positive level modules of affine algebras’, Adv. Math.194 (2005) 296-331. · Zbl 1154.17302
[12] V.Chari and A.Pressley, A guide to quantum groups (Cambridge University Press, Cambridge, 1995). Corrected reprint of the 1994 original. · Zbl 0839.17010
[13] V.Chari and A.Pressley, ‘Quantum affine algebras and their representations’, Representations of groups (Banff, AB, 1994), CMS Conference Proceedings 16 (American Mathematical Society, Providence, RI, 1995) 59-78. · Zbl 0855.17009
[14] V.Chari and A.Pressley, ‘Minimal affinizations of representations of quantum groups: the irregular case’, Lett. Math. Phys.36 (1996) 247-266. · Zbl 0857.17011
[15] B.Davison, ‘Positivity for quantum cluster algebras’, Ann. of Math. (2)187 (2018) 157-219. · Zbl 1408.13055
[16] V. G.Drinfeld, ‘Quantum groups’, Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Berkeley, alif.CA, 1986) (American Mathematical Society, Providence, RI, 1987) pp. 798-820. · Zbl 0667.16003
[17] V. G.Drinfeld, ‘A New realization of Yangians and quantized affine algebras’, Sov. Math. Dokl.36 (1988) 212-216. · Zbl 0667.16004
[18] S.Fomin and A.Zelevinsky, ‘Cluster algebras. I. Foundations’, J. Amer. Math. Soc.15 (2002) 497-529. · Zbl 1021.16017
[19] S.Fomin and A.Zelevinsky, ‘Cluster algebras: notes for the CDM‐03 conference’, Current developments in mathematics, 2003 (International Press, Somerville, MA, 2003) 1-34. · Zbl 1119.05108
[20] S.Fomin and A.Zelevinsky, ‘Cluster algebras. II. Finite type classification’, Invent. Math.154 (2003) 63-121. · Zbl 1054.17024
[21] S.Fomin and A.Zelevinsky, ‘Cluster algebras. IV. Coefficients’, Compos. Math.143 (2007) 112-164. · Zbl 1127.16023
[22] E.Frenkel and D.Hernandez, ‘Baxter’s relations and spectra of quantum integrable models’, Duke Math. J. 16412 (2015) 2407-2460. · Zbl 1332.82022
[23] E.Frenkel and E.Mukhin, ‘Combinatorics of \(q\)‐characters of finite‐dimensional representations of quantum affine algebras’, Comm. Math. Phys.216 (2001) 23-57. · Zbl 1051.17013
[24] E.Frenkel and N.Reshetikhin, ‘Quantum affine algebras and deformations of the Virasoro and \(\mathcal{W} \)‐algebras’, Comm. Math. Phys.178 (1996) 237-264. · Zbl 0869.17014
[25] E.Frenkel and N.Reshetikhin, ‘The \(q\)‐characters of representations of quantum affine algebras and deformations of \(\mathcal{W} \)‐algebras’, Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), Contemporary Mathematics 248 (American Mathematical Society, Providence, RI, 1999) 163-205. · Zbl 0973.17015
[26] C.Geiss, B.Leclerc and J.Schröer, ‘Quantum cluster algebras and their specializations’, J. Algebra558 (2020) 411-422. · Zbl 1440.13100
[27] V.Ginzburg and E.Vasserot, ‘Langlands reciprocity for affine quantum groups of type \(A_n\)’, Int. Math. Res. Not.3 (1993) 67-85. · Zbl 0785.17014
[28] K.Goodearl and M. T.Yakimov, ‘The Berenstein-Zelevinsky quantum cluster algebra conjecture’, J. Eur. Math. Soc. (JEMS)22 (2020) 2453-2509. · Zbl 1471.13046
[29] J. E.Grabowski and S.Gratz, ‘Graded quantum cluster algebras of infinite rank as colimits’, J. Pure Appl. Algebra222 (2018) 3395-3413. · Zbl 1420.13053
[30] D.Hernandez, ‘\(t\)‐analogues des opérateurs d’écrantage associés aux \(q\)‐caractères’, Int. Math. Res. Not.8 (2003) 451-475. · Zbl 1098.17008
[31] D.Hernandez, ‘Algebraic approach to q,t‐characters’, Adv. Math.187 (2004) 1-52. · Zbl 1098.17009
[32] D.Hernandez and M.Jimbo, ‘Asymptotic representations and Drinfeld rational fractions’, Compos. Math.148 (2012) 1593-1623. · Zbl 1266.17010
[33] D.Hernandez and B.Leclerc, ‘Cluster algebras and quantum affine algebras’, Duke Math. J.154 (2010) 265-341. · Zbl 1284.17010
[34] D.Hernandez and B.Leclerc, ‘Monoidal categorifications of cluster algebras of type \(A\) and \(D\)’, Symmetries, integrable systems and representations, Springer Proceedings in Mathematics & Statistics 40 (Springer, Heidelberg, 2013) 175-193. · Zbl 1317.13052
[35] D.Hernandez and B.Leclerc, ‘Quantum Grothendieck rings and derived Hall algebras’, J. reine angew. Math.701 (2015) 77-126. · Zbl 1315.17011
[36] D.Hernandez and B.Leclerc, ‘Cluster algebras and category \(\mathcal{O}\) for representations of Borel subalgebras of quantum affine algebras’, Algebra Number Theory10 (2016) 2015-2052. · Zbl 1390.17025
[37] D.Hernandez and B.Leclerc, ‘A cluster algebra approach to \(q\)‐characters of Kirillov-Reshetikhin modules’, J. Eur. Math. Soc. (JEMS)18 (2016) 1113-1159. · Zbl 1405.17028
[38] M.Jimbo, Ed. Yang-Baxter equation in integrable systems, Advanced Series in Mathematical Physics 10 (World Scientific, Teaneck, NJ, 1989).
[39] V.Kac, Infinite‐dimensional Lie algebras, 3rd edn (Cambridge University Press, Cambridge, 1990). · Zbl 0716.17022
[40] K.Lee and R.Schiffler, ‘Positivity for cluster algebras’, Ann. of Math. (2)182 (2015) 73-125. · Zbl 1350.13024
[41] G.Lusztig, ‘Canonical bases arising from quantized enveloping algebras’, J. Amer. Math. Soc.3 (1990) 447-498. · Zbl 0703.17008
[42] H.Nakajima, ‘Quiver varieties and \(t\)‐analogs of \(q\)‐characters of quantum affine algebras’, Ann. of Math. (2)160 (2004) 1057-1097. · Zbl 1140.17015
[43] F.Qin, ‘Quantum groups via cyclic quiver varieties I’, Compos. Math.152 (2016) 299-326. · Zbl 1377.16009
[44] G.Schrader and A.Shapiro, ‘A cluster realization of \(U_q ( \mathfrak{sl}_{\mathfrak{n}} )\) from quantum character varieties’, Invent. Math. (2019) 799-846, https://doi.org/10.1007/s00222‐019‐00857‐6. · Zbl 1451.17006 · doi:10.1007/s00222‐019‐00857‐6
[45] M.Varagnolo and E.Vasserot, ‘Perverse sheaves and quantum Grothendieck rings’, Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000), Progress of Mathematics 210 (Birkhäuser Boston, Boston, MA, 2003) 345-365. · Zbl 1162.17307
[46] E.Vasserot, ‘Affine quantum groups and equivariant \(K\)‐theory’, Transform. Groups3 (1998) 269-299. · Zbl 0969.17009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.