×

Categories over quantum affine algebras and monoidal categorification. (English) Zbl 1511.17037

Summary: Let \(U_q'(\mathfrak{g})\) be a quantum affine algebra of untwisted affine ADE type, and \(\mathcal{C}_{\mathfrak{g}}^0\) the Hernandez-Leclerc category of finite-dimensional \(U_q'(\mathfrak{g})\)-modules. For a suitable infinite sequence \(\widehat{w}_0= \cdots s_{i_{-1}}s_{i_0}s_{i_1} \cdots\) of simple reflections, we introduce subcategories \(\mathcal{C}_{\mathfrak{g}}^{[a,b]}\) of \(\mathcal{C}_{\mathfrak{g}}^0\) for all \(a \le b \in \mathbb{Z} \sqcup\{\pm \infty \} \). Associated with a certain chain \(\mathfrak{C}\) of intervals in \([a,b]\), we construct a real simple commuting family \(M(\mathfrak{C})\) in \(\mathcal{C}_{\mathfrak{g}}^{[a,b]} \), which consists of Kirillov-Reshetikhin modules. The category \(\mathcal{C}_{\mathfrak{g}}^{[a,b]}\) provides a monoidal categorification of the cluster algebra \(K(\mathcal{C}_{\mathfrak{g}}^{[a,b]})\), whose set of initial cluster variables is \([M(\mathfrak{C})]\). In particular, this result gives an affirmative answer to the monoidal categorification conjecture on \(\mathcal{C}_{\mathfrak{g}}^-\) by Hernandez-Leclerc since it is \(\mathcal{C}_{\mathfrak{g}}^{[-\infty,0]} \), and is also applicable to \(\mathcal{C}_{\mathfrak{g}}^0\) since it is \(\mathcal{C}_{\mathfrak{g}}^{[-\infty,\infty]} \).

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
16G20 Representations of quivers and partially ordered sets
20C08 Hecke algebras and their representations
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory

References:

[1] A. Berenstein and A. Zelevinsky, Quantum cluster algebras, Adv. Math. 195 (2005), no. 2, 405-455. · Zbl 1124.20028
[2] S. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497-529. · Zbl 1021.16017
[3] E. Frenkel and N. Reshetikhin, The \(q\)-characters of representations of quantum affine algebras and deformations of \(W\)-algebras, in Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), 163-205, Contemp. Math., 248, Amer. Math. Soc., Providence, RI, 1999. · Zbl 0973.17015
[4] R. Fujita and S.-j. Oh, Combinatorics of twisted Auslander-Reiten quivers and Representations of quantum affine algebras, in preparation.
[5] D. Hernandez, The Kirillov-Reshetikhin conjecture and solutions of \(T\)-systems, J. Reine Angew. Math. 596 (2006), 63-87. · Zbl 1160.17010
[6] D. Hernandez and B. Leclerc, Cluster algebras and quantum affine algebras, Duke Math. J. 154 (2010), no. 2, 265-341. · Zbl 1284.17010
[7] D. Hernandez and B. Leclerc, Quantum Grothendieck rings and derived Hall algebras, J. Reine Angew. Math. 701 (2015), 77-126. · Zbl 1315.17011
[8] D. Hernandez and B. Leclerc, Monoidal categorifications of cluster algebras of type \(A\) and \(D\), in Symmetries, integrable systems and representations, 175-193, Springer Proc. Math. Stat., 40, Springer, Heidelberg, 2013. · Zbl 1317.13052
[9] D. Hernandez and B. Leclerc, A cluster algebra approach to \(q\)-characters of Kirillov-Reshetikhin modules, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 5, 1113-1159. · Zbl 1405.17028
[10] S.-J. Kang, M. Kashiwara and M. Kim, Symmetric quiver Hecke algebras and \(R\)-matrices of quantum affine algebras, II, Duke Math. J. 164 (2015), no. 8, 1549-1602. · Zbl 1323.81046
[11] S.-J. Kang, M. Kashiwara, M. Kim and S.-j. Oh, Monoidal categorification of cluster algebras, J. Amer. Math. Soc. 31 (2018), no. 2, 349-426. · Zbl 1460.13039
[12] M. Kashiwara, M. Kim, S.-j. Oh and E. Park, Symmetric quiver Hecke algebras and \(R\)-matrices of quantum affine algebras IV, Selecta Math. (N.S.) 22 (2016), no. 4, 1987-2015. · Zbl 1354.81030
[13] M. Kashiwara, M. Kim, S.-j. Oh and E. Park, Monoidal categorification and quantum affine algebras, Compos. Math. 156 (2020), no. 5, 1039-1077. · Zbl 1497.17020
[14] M. Kashiwara, M. Kim, S.-j. Oh and E. Park, Block decomposition for quantum affine algebras by the associated simply-laced root system, arXiv:2003.03265v1.
[15] M. Kashiwara, M. Kim, S.-j. Oh and E. Park, Braid group action on the module category of quantum affine algebras, Proc. Japan Acad. Ser. A Math. Sci. 97 (2021), no. 3, 13-18. · Zbl 1511.17035
[16] M. Kashiwara, M. Kim, S.-j. Oh and E. Park, PBW theoretic approach to the module category of quantum affine algebras, Proc. Japan Acad. Ser. A Math. Sci. 97 (2021), no. 6, 33-37. · Zbl 1511.17036
[17] M. Kashiwara and S.-j. Oh, Categorical relations between Langlands dual quantum affine algebras: doubly laced types, J. Algebraic Combin. 49 (2019), no. 4, 401-435. · Zbl 1479.17027
[18] A. Kuniba, T. Nakanishi and J. Suzuki, Functional relations in solvable lattice models. I. Functional relations and representation theory, Internat. J. Modern Phys. A 9 (1994), no. 30, 5215-5266. · Zbl 0985.82501
[19] H. Nakajima, Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc. 14 (2001), no. 1, 145-238. · Zbl 0981.17016
[20] H. Nakajima, Quiver varieties and cluster algebras, Kyoto J. Math. 51 (2011), no. 1, 71-126. · Zbl 1223.13013
[21] S.-j. Oh and T. Scrimshaw, Categorical relations between Langlands dual quantum affine algebras: exceptional cases, Comm. Math. Phys. 368 (2019), no. 1, 295-367. · Zbl 1439.81063
[22] S.-j. Oh and U. R. Suh, Twisted and folded Auslander-Reiten quivers and applications to the representation theory of quantum affine algebras, J. Algebra 535 (2019), 53-132. · Zbl 1419.81023
[23] F. Qin, Triangular bases in quantum cluster algebras and monoidal categorification conjectures, Duke Math. J. 166 (2017), no. 12, 2337-2442. · Zbl 1454.13037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.