×

Monoidal categories of modules over quantum affine algebras of type \(A\) and \(B\). (English) Zbl 1472.17054

In this paper the authors apply the general procedure of the Khovanov-Lauda-Rouquier type quantum affine Schur-Weyl duality in order to obtain an exact tensor functor from the category \(\mathcal A\) of finite-dimensional graded modules over the symmetric quiver Hecke algebra of type \(A_\infty\) to the category \(\mathcal C_{B_n^{(1)}}\) of finite-dimensional integrable modules over the quantum affine algebra of type \(B_n^{(1)}\). This functor is shown to factor through a certain localization \(\mathcal T_{2n}\) of the category \(\mathcal A\), which is related to the categories of finite-dimensional integrable modules over the quantum affine algebra of type \(A^{(t)}_{2n-1} \), \(t = 1, 2\). This gives rise to a ring isomorphism between the Grothendieck rings of appropriate categories of modules over quantum affine algebras of types \(A\) and \(B\), which induces a bijection between the sets of classes of simple objects.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
16T25 Yang-Baxter equations

References:

[1] T. Akasaka and M. Kashiwara, ‘Finite‐dimensional representations of quantum affine algebras’, Publ. Res. Inst. Math. Sci.33 (1997) 839-867. · Zbl 0915.17011
[2] I. N. Bernstein and A. V. Zelevinsky, ‘Induced representations of reductive p‐adic groups. I’, Ann. Sci. Éc. Norm. Supér10 (1977) 441-472. · Zbl 0412.22015
[3] V. Chari and A. Pressley, ‘Quantum affine algebras and their representations’, Representations of groups, Canadian Mathematical Society Conference Proceedings 16 (American Mathematical Society, Providence, RI, 1995) 59-78. · Zbl 0855.17009
[4] V. Chari and A. Pressley, ‘Quantum affine algebras and affine Hecke algebras’, Pacific J. Math.174 (1996) 295-326. · Zbl 0881.17011
[5] I. V. Cherednik, ‘A new interpretation of Gelfand‐Tzetlin bases’, Duke Math. J.54 (1987) 563-577. · Zbl 0645.17006
[6] E. Frenkel and D. Hernandez, ‘Langlands duality for finite‐dimensional representations of quantum affine algebras’, Lett. Math. Phys.96 (2011) 217-261. · Zbl 1222.17014
[7] E. Frenkel and N. Yu. Reshetikhin, ‘The q‐characters of representations of quantum affine algebras and deformations of W‐algebras’, Recent developments in quantum affine algebras and related topics, Contemporary Mathematics 248 (American Mathematical Society, Providence, RI, 1999) 163-205. · Zbl 0973.17015
[8] V. Ginzburg, N. Reshetikhin and E. Vasserot, ‘Quantum groups and flag varieties’, Contemporay Mathematics, vol. 175 (American Mathematical Society, Providence, RI, 1994) 101-130. · Zbl 0818.17018
[9] D. Hernandez, ‘Kirillov‐Reshetikhin conjecture: the general case’, Int. Math. Res. Not. IMRN2010 (2010) 149-193. · Zbl 1242.17017
[10] D. Hernandez and B. Leclerc, ‘Cluster algebras and quantum affine algebras’, Duke Math. J.154 (2010) 265-341. · Zbl 1284.17010
[11] V. Kac, Infinite dimensional Lie algebras, 3rd edn (Cambridge University Press, Cambridge, 1990). · Zbl 0716.17022
[12] S.‐J. Kang, M. Kashiwara and M. Kim, ‘Symmetric quiver Hecke algebras and R‐matrices of quantum affine algebras’, Invent. Math., to appear. · Zbl 1323.81046
[13] S.‐J. Kang, M. Kashiwara and M. Kim, ‘Symmetric quiver Hecke algebras and R‐matrices of quantum affine algebras II’, Duke Math. J.164 (2015) 1549-1602. · Zbl 1323.81046
[14] S.‐J. Kang, M. Kashiwara, M. Kim and S.‐j. Oh, ‘Simplicity of heads and socles of tensor products’, Compos. Math.151 (2015) 377-396. · Zbl 1366.17014
[15] S.‐J. Kang, M. Kashiwara, M. Kim and S.‐j. Oh, ‘Symmetric quiver Hecke algebras and R‐matrices of quantum affine algebras III’, Proc. Lond. Math. Soc.111 (2015) 420-444. · Zbl 1322.81056
[16] S.‐J. Kang, M. Kashiwara, M. Kim and S.‐j. Oh, ‘Monoidal categorification of cluster algebras’, Amer. Math. Soc.31 (2018) 349-426. · Zbl 1460.13039
[17] S.‐J. Kang, M. Kashiwara, M. Kim and S.‐j. Oh, ‘Symmetric quiver Hecke algebras and R‐matrices of quantum affine algebras IV’, Selecta Math.22 (2016) 1987-2015. · Zbl 1354.81030
[18] S.‐J. Kang and E. Park, ‘Irreducible modules over Khovanov‐Lauda‐Rouquier algebras of type An and semistandard tableaux’, J. Algebra339 (2011) 223-251. · Zbl 1290.17008
[19] M. Kashiwara, ‘On level zero representations of quantum affine algebras’, Duke. Math. J.112 (2002) 117-175. · Zbl 1033.17017
[20] M. Kashiwara and S.‐j. Oh, ‘Categorical relations between Langlands dual quantum affine algebras: Doubly laced types’, Preprint, 2017, arXiv:1705.07542 [math.RT].
[21] M. Kashiwara and E. Park, ‘Affinizations and R‐matrices for quiver Hecke algebras’, J. Eur. Math. Soc.20 (2018) 1161-1193. · Zbl 1475.16024
[22] M. Khovanov and A. Lauda, ‘A diagrammatic approach to categorification of quantum groups I’, Represent. Theory13 (2009) 309-347. · Zbl 1188.81117
[23] A. Kleshchev and A. Ram, ‘Representations of Khovanov‐Lauda‐Rouquier algebras and combinatorics of Lyndon words’, Math. Ann.349 (2011) 943-975. · Zbl 1267.20010
[24] H. Nakajima, ‘Quiver varieties and t‐analogue of q‐characters of quantum affine algebras’, Ann. Math.160 (2004) 1057-1097. · Zbl 1140.17015
[25] S.‐j. Oh, ‘The denominators of normalized R‐matrices of types A2n−1(2), A2n(2), Bn(1) and Dn+1(2)’, Publ. Res. Inst. Math. Sci.51 (2015) 709-744. · Zbl 1337.81080
[26] R. Rouquier, ‘2‐Kac‐Moody algebras’, Preprint, 2008, arXiv:0812.5023v1 [math.RT]. · Zbl 1213.20007
[27] M. Vazirani, ‘Parameterizing Hecke algebra modules: Bernstein‐Zelevinsky multisegments, Kleshchev multipartitions, and crystal graphs’, Transform. Groups.7 (2002) 267-303. · Zbl 1061.20007
[28] A. V. Zelevinsky, ‘Induced representations of reductive p‐adic groups. II. On irreducible representations of GL(n)’, Ann. Sci. Éc. Norm. Supér.13 (1980) 165-210. · Zbl 0441.22014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.