×

On time-domain NRBC for Maxwell’s equations and its application in accurate simulation of electromagnetic invisibility cloaks. (English) Zbl 1464.78026

Summary: In this paper, we present analytic formulas of the temporal convolution kernel functions involved in the time-domain non-reflecting boundary condition (NRBC) for the electromagnetic scattering problems. Such exact formulas themselves lead to accurate and efficient algorithms for computing the NRBC for domain reduction of the time-domain Maxwell’s system in \({\mathbb{R}}^3\). A second purpose of this paper is to derive a new time-domain model for the electromagnetic invisibility cloak. Different from the existing models, it contains only one unknown field and the seemingly complicated convolutions can be computed as efficiently as the temporal convolutions in the NRBC. The governing equation in the cloaking layer is valid for general geometry, e.g., a spherical or polygonal layer. Here, we aim at simulating the spherical invisibility cloak. We take the advantage of radially stratified dispersive media and special geometry, and develop an efficient vector spherical harmonic-spectral-element method for its accurate simulation. Compared with limited results on FDTD simulation, the proposed method is optimal in both accuracy and computational cost. Indeed, the saving in computational time is significant.

MSC:

78M22 Spectral, collocation and related methods applied to problems in optics and electromagnetic theory
78M20 Finite difference methods applied to problems in optics and electromagnetic theory
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
78A45 Diffraction, scattering
44A10 Laplace transform
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type

Software:

DLMF

References:

[1] Abramowitz, M.; Stegun, I., Handbook of Mathematical Functions (1964), New York: Dover, New York · Zbl 0171.38503
[2] Alpert, B.; Greengard, L.; Hagstrom, T., Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation, SIAM J. Numer. Anal., 37, 4, 1138-1164 (2000) · Zbl 0963.65104 · doi:10.1137/S0036142998336916
[3] Alpert, B.; Greengard, L.; Hagstrom, T., Nonreflecting boundary conditions for the time-dependent wave equation, J. Comput. Phys., 180, 1, 270-296 (2002) · Zbl 1002.65096 · doi:10.1006/jcph.2002.7093
[4] Arfken, GB; Weber, HJ, Mathematical Methods for Physicists (1999), Cambridge: Academic Press, Cambridge · Zbl 1066.00001
[5] Berenger, JP, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 2, 185-200 (1994) · Zbl 0814.65129 · doi:10.1006/jcph.1994.1159
[6] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory, volume 93 of Applied Mathematical Sciences (1998), Berlin: Springer, Berlin · Zbl 0893.35138 · doi:10.1007/978-3-662-03537-5
[7] Cummer, SA; Popa, BI; Schurig, D.; Smith, DR; Pendry, JB, Full-wave simulations of electromagnetic cloaking structures, Phys. Rev. E, 74, 3, 036621 (2006) · doi:10.1103/PhysRevE.74.036621
[8] Engquist, B.; Majda, A., Absorbing boundary conditions for the numerical simulation of waves, Math. Comput., 31, 139, 629-651 (1977) · Zbl 0367.65051 · doi:10.1090/S0025-5718-1977-0436612-4
[9] Greenleaf, A.; Kurylev, Y.; Lassas, M.; Uhlmann, G., Cloaking devices, electromagnetic wormholes, and transformation optics, SIAM Rev., 51, 1, 3-33 (2009) · Zbl 1158.78004 · doi:10.1137/080716827
[10] Greenleaf, A.; Lassas, M.; Uhlmann, G., Anisotropic conductivities that cannot be detected by EIT, Physiol. Meas., 24, 2, 413 (2003) · doi:10.1088/0967-3334/24/2/353
[11] Grote, MJ; Keller, JB, On non-reflecting boundary conditions, J. Comput. Phys., 122, 231-243 (1995) · Zbl 0841.65099 · doi:10.1006/jcph.1995.1210
[12] Hagstrom, T., Radiation boundary conditions for the numerical simulation of waves, Acta Numer., 8, 47-106 (1999) · Zbl 0940.65108 · doi:10.1017/S0962492900002890
[13] Hagstrom, T.; Lau, S., Radiation boundary conditions for Maxwell’s equations: a review of accurate time-domain formulations, J. Comput. Math., 25, 3, 305-336 (2007)
[14] Hao, Y.; Mittra, R., FDTD Modeling of Metamaterials: Theory and Applications (2008), London: Artech House, London · Zbl 1161.78001
[15] Hill, EL, The theory of vector spherical harmonics, Am. J. Phys., 22, 211-214 (1954) · Zbl 0057.05303 · doi:10.1119/1.1933682
[16] Jiang, SD; Greengard, L., Efficient representation of nonreflecting boundary conditions for the time-dependent Schrödinger equation in two dimensions, Commun. Pure Appl. Math., 61, 2, 261-288 (2008) · Zbl 1146.35005 · doi:10.1002/cpa.20200
[17] Kohn, RV; Onofrei, D.; Vogelius, MS; Weinstein, MI, Cloaking via change of variables for the Helmholtz equation, Commun. Pure Appl. Math., 63, 8, 973-1016 (2010) · Zbl 1194.35505
[18] Leonhardt, U., Optical conformal mapping, Science, 312, 5781, 1777-1780 (2006) · Zbl 1226.78001 · doi:10.1126/science.1126493
[19] Li, JC; Huang, YQ, Time-Domain Finite Element Methods for Maxwell’s Equations in Metamaterials (2012), Berlin: Springer, Berlin · Zbl 1304.78002
[20] Li, JC, Error analysis of fully discrete mixed finite element schemes for 3D Maxwell’s equations in dispersive media, Comput. Methods Appl. Mech. Eng., 196, 33, 3081-3094 (2007) · Zbl 1173.78319 · doi:10.1016/j.cma.2006.12.009
[21] Li, JC; Huang, YQ; Yang, W., Developing a time-domain finite-element method for modeling of electromagnetic cylindrical cloaks, J. Comput. Phys., 231, 7, 2880-2891 (2012) · Zbl 1242.78030 · doi:10.1016/j.jcp.2011.12.026
[22] Li, JC; Huang, YQ; Yang, W., An adaptive edge finite element method for electromagnetic cloaking simulation, J. Comput. Phys., 249, 216-232 (2013) · Zbl 1304.78014 · doi:10.1016/j.jcp.2013.04.026
[23] Li, JC; Huang, YQ; Yang, W., Well-posedness study and finite element simulation of time-domain cylindrical and elliptical cloaks, Math. Comput., 84, 292, 543-562 (2015) · Zbl 1308.78024 · doi:10.1090/S0025-5718-2014-02911-6
[24] Li, JC; Meng, C.; Huang, YQ, Improved analysis and simulation of a time-domain carpet cloak model, Comput. Methods Appl. Math., 19, 2, 359-378 (2019) · Zbl 1421.78024 · doi:10.1515/cmam-2018-0001
[25] Liu, HY; Zhou, T., On approximate electromagnetic cloaking by transformation media, SIAM J. Appl. Math., 71, 1, 218-241 (2011) · Zbl 1213.35403 · doi:10.1137/10081112X
[26] Monk, P., Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and Scientific Computation (2003), New York: Oxford University Press, New York · Zbl 1024.78009 · doi:10.1093/acprof:oso/9780198508885.001.0001
[27] Morse, PM; Feshbach, H., Methods of Theoretical Physics (1953), New York: McGraw-Hill Book Co., Inc., New York · Zbl 0051.40603
[28] Nédélec, JC, Acoustic and Electromagnetic Equations, volume 144 of Applied Mathematical Sciences (2001), New York: Springer, New York · Zbl 0981.35002 · doi:10.1007/978-1-4757-4393-7
[29] Okada, N.; Cole, JB, FDTD modeling of a cloak with a nondiagonal permittivity tensor, ISRN Opt., 2012, 063903 (2012) · doi:10.5402/2012/536209
[30] Olver, FWJ; Lozier, DW; Boisvert, RF; Clark, CW, NIST Handbook of Mathematical Functions (2010), Cambridge: Cambridge University Press, Cambridge · Zbl 1198.00002
[31] Orfanidis, SJ, Electromagnetic Waves and Antennas (2002), New Brunswick: Rutgers University, New Brunswick
[32] Pendry, JB; Holden, AJ; Stewart, WJ; Youngs, I., Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett., 76, 25, 4773 (1996) · doi:10.1103/PhysRevLett.76.4773
[33] Pendry, JB; Schurig, D.; Smith, DR, Controlling electromagnetic fields, Science, 312, 5781, 1780-1782 (2006) · Zbl 1226.78003 · doi:10.1126/science.1125907
[34] Rahm, M.; Cummer, SA; Schurig, D.; Pendry, JB; Smith, DR, Optical design of reflectionless complex media by finite embedded coordinate transformations, Phys. Rev. Lett., 100, 6, 063903 (2008) · doi:10.1103/PhysRevLett.100.063903
[35] Ruan, ZC; Yan, M.; Neff, CW; Qiu, M., Ideal cylindrical cloak: perfect but sensitive to tiny perturbations, Phys. Rev. Lett., 99, 11, 113903 (2007) · doi:10.1103/PhysRevLett.99.113903
[36] Sofronov, IL, Artificial boundary conditions of absolute transparency for two- and three-dimensional external time-dependent scattering problems, Eur. J. Appl. Math., 9, 6, 561-588 (1998) · Zbl 0926.35070 · doi:10.1017/S0956792598003507
[37] Swarztrauber, PN; Spotz, WF, Generalized discrete spherical harmonic transforms, J. Comput. Phys., 159, 2, 213-230 (2000) · Zbl 0962.65117 · doi:10.1006/jcph.2000.6431
[38] Tokita, T., Exponential decay of solutions for the wave equation in the exterior domain with spherical boundary, J. Math. Kyoto Univ., 12, 2, 413-430 (1972) · Zbl 0242.35049 · doi:10.1215/kjm/1250523528
[39] Tsang, M.; Psaltis, D., Magnifying perfect lens and superlens design by coordinate transformation, Phys. Rev. B., 77, 3, 035122 (2008) · doi:10.1103/PhysRevB.77.035122
[40] Wang, LL; Wang, B.; Zhao, XD, Fast and accurate computation of time-domain acoustic scattering problems with exact nonreflecting boundary conditions, SIAM J. Appl. Math., 72, 6, 1869-1898 (2012) · Zbl 1336.35309 · doi:10.1137/110849146
[41] Watson, GN, A Treatise of the Theory of Bessel Functions (1966), Cambridge: Cambridge University Press, Cambridge · Zbl 0174.36202
[42] Yan, M.; Yan, W.; Qiu, M., Cylindrical superlens by a coordinate transformation, Phys. Rev. B, 78, 12, 125113 (2008) · doi:10.1103/PhysRevB.78.125113
[43] Yang, W.; Li, JC; Huang, YQ, Mathematical analysis and finite element time domain simulation of arbitrary star-shaped electromagnetic cloaks, SIAM J. Numer. Anal., 56, 1, 136-159 (2018) · Zbl 1421.78026 · doi:10.1137/16M1093835
[44] Yang, ZG; Wang, LL, Accurate simulation of circular and elliptic cylindrical invisibility cloaks, Commun. Comput. Phys., 17, 3, 822-849 (2015) · Zbl 1373.78458 · doi:10.4208/cicp.280514.131014a
[45] Yang, ZG; Wang, LL; Rong, ZJ; Wang, B.; Zhang, BL, Seamless integration of global Dirichlet-to-Neumann boundary condition and spectral elements for transformation electromagnetics, Comput. Methods Appl. Mech. Eng., 301, 137-163 (2016) · Zbl 1423.78008 · doi:10.1016/j.cma.2015.12.020
[46] Zhai, YB; Ping, XW; Jiang, WX; Cui, TJ, Finite-element analysis of three-dimensional axisymmetrical invisibility cloaks and other metamaterial devices, Commun. Comput. Phys., 8, 4, 823-834 (2010) · doi:10.4208/cicp.091009.080210a
[47] Zhang, BL; Wu, BI; Chen, HS; Kong, JA, Rainbow and blueshift effect of a dispersive spherical invisibility cloak impinged on by a nonmonochromatic plane wave, Phys. Rev. Lett., 101, 6, 063902 (2008) · doi:10.1103/PhysRevLett.101.063902
[48] Zhao, Y.; Argyropoulos, C.; Hao, Y., Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures, Opt. Express, 16, 9, 6717-6730 (2008) · doi:10.1364/OE.16.006717
[49] Zhao, Y.; Hao, Y., Full-wave parallel dispersive finite-difference time-domain modeling of three-dimensional electromagnetic cloaking structures, J. Comput. Phys., 228, 19, 7300-7312 (2009) · Zbl 1175.78031 · doi:10.1016/j.jcp.2009.06.026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.