×

Well-posedness study and finite element simulation of time-domain cylindrical and elliptical cloaks. (English) Zbl 1308.78024

The main purpose of the paper under review is to establish the well-posedness for the governing equations which are used for cylindrical cloaking simulation. The authors also propose a new mixed finite element scheme for simulating the cylindrical cloak. Numerical results showing the cloaking phenomena obtained by the new scheme are provided in a separate section. Numerical simulations and analysis of the elliptical cloak are performed in the final part of this paper.

MSC:

78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
65F10 Iterative numerical methods for linear systems
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] [Alu] A. Al\'u and N. Engheta, Achieving transparency with plasmonic and metamaterial coatings, Phys. Rev. E 72 (2005) 016623.
[2] Ammari, Habib; Ciraolo, Giulio; Kang, Hyeonbae; Lee, Hyundae; Milton, Graeme W., Spectral theory of a Neumann-Poincar\'e-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Ration. Mech. Anal., 208, 2, 667-692 (2013) · Zbl 1282.78004 · doi:10.1007/s00205-012-0605-5
[3] Ammari, Habib; Garnier, Josselin; Jugnon, Vincent; Kang, Hyeonbae; Lee, Hyundae; Lim, Mikyoung, Enhancement of near-cloaking. Part III: Numerical simulations, statistical stability, and related questions. Multi-scale and high-contrast PDE: from modelling, to mathematical analysis, to inversion, Contemp. Math. 577, 1-24 (2012), Amer. Math. Soc.: Providence, RI:Amer. Math. Soc. · Zbl 1303.35107 · doi:10.1090/conm/577/11460
[4] Ammari, Habib; Kang, Hyeonbae; Lee, Hyundae; Lim, Mikyoung, Enhancement of near cloaking using generalized polarization tensors vanishing structures. Part I: The conductivity problem, Comm. Math. Phys., 317, 1, 253-266 (2013) · Zbl 1303.35108 · doi:10.1007/s00220-012-1615-8
[5] Ammari, Habib; Kang, Hyeonbae; Lee, Hyundae; Lim, Mikyoung, Enhancement of near-cloaking. Part II: The Helmholtz equation, Comm. Math. Phys., 317, 2, 485-502 (2013) · Zbl 1260.35095 · doi:10.1007/s00220-012-1620-y
[6] Ammari, Habib; Kang, Hyeonbae; Lee, Hyundae; Lim, Mikyoung; Yu, Sanghyeon, Enhancement of near cloaking for the full Maxwell equations, SIAM J. Appl. Math., 73, 6, 2055-2076 (2013) · Zbl 1291.35438 · doi:10.1137/120903610
[7] Bao, Gang; Li, Peijun; Wu, Haijun, An adaptive edge element method with perfectly matched absorbing layers for wave scattering by biperiodic structures, Math. Comp., 79, 269, 1-34 (2010) · Zbl 1197.78031 · doi:10.1090/S0025-5718-09-02257-1
[8] Beck, Rudi; Hiptmair, Ralf; Hoppe, Ronald H. W.; Wohlmuth, Barbara, Residual based a posteriori error estimators for eddy current computation, M2AN Math. Model. Numer. Anal., 34, 1, 159-182 (2000) · Zbl 0949.65113 · doi:10.1051/m2an:2000136
[9] Berenger, Jean-Pierre, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 2, 185-200 (1994) · Zbl 0814.65129 · doi:10.1006/jcph.1994.1159
[10] Brenner, S. C.; Cui, J.; Nan, Z.; Sung, L.-Y., Hodge decomposition for divergence-free vector fields and two-dimensional Maxwell’s equations, Math. Comp., 81, 278, 643-659 (2012) · Zbl 1274.78089 · doi:10.1090/S0025-5718-2011-02540-8
[11] Brenner, Susanne C.; Li, Fengyan; Sung, Li-Yeng, A locally divergence-free nonconforming finite element method for the time-harmonic Maxwell equations, Math. Comp., 76, 258, 573-595 (2007) · Zbl 1126.78017 · doi:10.1090/S0025-5718-06-01950-8
[12] [Chen2010] H. Chen, C.T. Chan and P. Sheng, Transformation optics and metamaterials, Nature Materials 9 (2010) 387-396.
[13] Chen, Zhiming; Du, Qiang; Zou, Jun, Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients, SIAM J. Numer. Anal., 37, 5, 1542-1570 (2000) · Zbl 0964.78017 · doi:10.1137/S0036142998349977
[14] Chung, Eric T.; Ciarlet, Patrick, Jr.; Yu, Tang Fei, Convergence and superconvergence of staggered discontinuous Galerkin methods for the three-dimensional Maxwell’s equations on Cartesian grids, J. Comput. Phys., 235, 14-31 (2013) · Zbl 1291.65278 · doi:10.1016/j.jcp.2012.10.019
[15] Ciarlet, P., Jr.; Zou, Jun, Fully discrete finite element approaches for time-dependent Maxwell’s equations, Numer. Math., 82, 2, 193-219 (1999) · Zbl 1126.78310 · doi:10.1007/s002110050417
[16] [Cummer2006] S.A. Cummer, B.-I. Popa, D. Schurig, D.R. Smith and J. Pendry, Full-wave simulations of electromagnetic cloaking structures, Phys. Rev. E 74 (2006) 036621.
[17] Demkowicz, Leszek; Kurtz, Jason; Pardo, David; Paszy{\'n}ski, Maciej; Rachowicz, Waldemar; Zdunek, Adam, Computing with \(hp\)-Adaptive Finite Elements. Vol. 2, Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series, xvi+417 pp. (2008), Chapman & Hall/CRC, Boca Raton, FL · Zbl 1148.65001
[18] Fernandes, Paolo; Raffetto, Mirco, Well-posedness and finite element approximability of time-harmonic electromagnetic boundary value problems involving bianisotropic materials and metamaterials, Math. Models Methods Appl. Sci., 19, 12, 2299-2335 (2009) · Zbl 1205.78058 · doi:10.1142/S0218202509004121
[19] [Fridman] M. Fridman, A. Farsi, Y. Okawachi and A.L. Gaeta, Demonstration of temporal cloaking, Nature 481 (2012) 62-65.
[20] Greenleaf, Allan; Lassas, Matti; Uhlmann, Gunther, On nonuniqueness for Calder\'on’s inverse problem, Math. Res. Lett., 10, 5-6, 685-693 (2003) · Zbl 1054.35127 · doi:10.4310/MRL.2003.v10.n5.a11
[21] Greenleaf, Allan; Kurylev, Yaroslav; Lassas, Matti; Uhlmann, Gunther, Cloaking devices, electromagnetic wormholes, and transformation optics, SIAM Rev., 51, 1, 3-33 (2009) · Zbl 1158.78004 · doi:10.1137/080716827
[22] [Guenneau] S. Guenneau, R.C. McPhedran, S. Enoch, A.B. Movchan, M. Farhat and N.-A. P. Nicorovici, The colours of cloaks, J. Opt. 13 (2011) 024014.
[23] [Guevara] F. Guevara Vasquez, G.W. Milton and D. Onofrei, Broadband exterior cloaking, Opt. Express 17 (2009) 14800-14805.
[24] [Hao] J. Hao, W. Yan and M. Qiu, Super-reflection and cloaking based on zero index metamaterial, Appl. Phys. Lett. 96, 101109 (2010).
[25] [Hao2008] Y. Hao and R. Mittra, FDTD Modeling of Metamaterials: Theory and Applications, Artech House Publishers, 2008.
[26] Hesthaven, Jan S.; Warburton, Tim, Nodal Discontinuous Galerkin Methods, Texts in Applied Mathematics 54, xiv+500 pp. (2008), Springer: New York:Springer · Zbl 1134.65068 · doi:10.1007/978-0-387-72067-8
[27] Houston, Paul; Perugia, Ilaria; Schneebeli, Anna; Sch{\"o}tzau, Dominik, Interior penalty method for the indefinite time-harmonic Maxwell equations, Numer. Math., 100, 3, 485-518 (2005) · Zbl 1071.65155 · doi:10.1007/s00211-005-0604-7
[28] [WX] W.X. Jiang, T.J. Cui, G.X. Yu, X.Q. Lin, Q. Cheng, J.Y. Chin, Arbitrarily elliptical-cylindrical invisible cloaking, J. Phys. D: Appl. Phys. 41 (2008), 085504.
[29] Kohn, Robert V.; Onofrei, Daniel; Vogelius, Michael S.; Weinstein, Michael I., Cloaking via change of variables for the Helmholtz equation, Comm. Pure Appl. Math., 63, 8, 973-1016 (2010) · Zbl 1194.35505 · doi:10.1002/cpa.20326
[30] Kohn, R. V.; Shen, H.; Vogelius, M. S.; Weinstein, M. I., Cloaking via change of variables in electric impedance tomography, Inverse Problems, 24, 1, 015016, 21 pp. (2008) · Zbl 1153.35406 · doi:10.1088/0266-5611/24/1/015016
[31] Leonhardt, Ulf, Optical conformal mapping, Science, 312, 5781, 1777-1780 (2006) · Zbl 1226.78001 · doi:10.1126/science.1126493
[32] Leonhardt, Ulf; Philbin, Thomas, Geometry and Light, viii+278 pp. (2010), Dover Publications Inc.: Mineola, NY:Dover Publications Inc. · Zbl 1219.00021
[33] [Leonhardt2009] U. Leonhardt and T. Tyc, Broadband invisibility by non-Euclidean cloaking, Science 323 (2009) 110-112.
[34] Li, Jichun; Huang, Yunqing, Mathematical simulation of cloaking metamaterial structures, Adv. Appl. Math. Mech., 4, 1, 93-101 (2012)
[35] Li, Jichun; Huang, Yunqing, Time-domain Finite Element Methods for Maxwell’s Equations in Metamaterials, Springer Series in Computational Mathematics 43, xii+302 pp. (2013), Springer: Heidelberg:Springer · Zbl 1304.78002 · doi:10.1007/978-3-642-33789-5
[36] Li, Jichun; Huang, Yunqing; Yang, Wei, Developing a time-domain finite-element method for modeling of electromagnetic cylindrical cloaks, J. Comput. Phys., 231, 7, 2880-2891 (2012) · Zbl 1242.78030 · doi:10.1016/j.jcp.2011.12.026
[37] Li, Jingzhi; Liu, Hongyu; Sun, Hongpeng, Enhanced approximate cloaking by SH and FSH lining, Inverse Problems, 28, 7, 075011, 21 pp. (2012) · Zbl 1250.78025 · doi:10.1088/0266-5611/28/7/075011
[38] [Liang] Z. Liang, P. Yao, X. Sun and X. Jiang, The physical picture and the essential elements of the dynamical process for dispersive cloaking structures, Appl. Phys. Lett. 92, 131118 (2008).
[39] Liu, Hongyu; Zhou, Ting, On approximate electromagnetic cloaking by transformation media, SIAM J. Appl. Math., 71, 1, 218-241 (2011) · Zbl 1213.35403 · doi:10.1137/10081112X
[40] [Liu2009] R. Liu, C. Ji, J.J. Mock, J.Y. Chin, T.J. Cui and D.R. Smith, Broadband ground-plane cloak, Science 323 (2009) 366-369.
[41] Milton, Graeme W.; Nicorovici, Nicolae-Alexandru P., On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462, 2074, 3027-3059 (2006) · Zbl 1149.00310 · doi:10.1098/rspa.2006.1715
[42] Monk, Peter, Finite Element Methods for Maxwell’s Equations, Numerical Mathematics and Scientific Computation, xiv+450 pp. (2003), Oxford University Press: New York:Oxford University Press · Zbl 1024.78009 · doi:10.1093/acprof:oso/9780198508885.001.0001
[43] Nguyen, Hoai-Minh, Approximate cloaking for the Helmholtz equation via transformation optics and consequences for perfect cloaking, Comm. Pure Appl. Math., 65, 2, 155-186 (2012) · Zbl 1231.35310 · doi:10.1002/cpa.20392
[44] [Nguyen] V.C. Nguyen, L. Chen and K. Halterman, Total transmission and total reflection by zero index metamaterials with defects, Phys. Rev. Lett. 105, 233908 (2010).
[45] [NO] N. Okada and J.B. Cole, FDTD modeling of a cloak with a nondiagonal permittivity tensor, ISRN Optics, Article ID 536209, doi:10.5402/2012/536209, 2012.
[46] Pendry, J. B.; Schurig, D.; Smith, D. R., Controlling electromagnetic fields, Science, 312, 5781, 1780-1782 (2006) · Zbl 1226.78003 · doi:10.1126/science.1125907
[47] [Scheid] C. Scheid and S. Lanteri, Convergence of a Discontinuous Galerkin scheme for the mixed time domain Maxwell’s equations in dispersive media, IMA J. Numer. Anal. (in press). doi:10.1093/imanum/drs008. · Zbl 1277.78035
[48] [Schurig] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science 314 (2006) 977-980.
[49] Shaw, Simon, Finite element approximation of Maxwell’s equations with Debye memory, Adv. Numer. Anal., Art. ID 923832, 28 pp. (2010) · Zbl 1221.78049
[50] Wang, Bo; Xie, Ziqing; Zhang, Zhimin, Error analysis of a discontinuous Galerkin method for Maxwell equations in dispersive media, J. Comput. Phys., 229, 22, 8552-8563 (2010) · Zbl 1203.78052 · doi:10.1016/j.jcp.2010.07.038
[51] [Yan] M. Yan, W. Yan and M. Qiu, Invisibility cloaking by coordinate transformation, Progress in Optics 52 (2009) 261-304.
[52] [YZH] Y. Zhao, C. Argyropoulos and Y. Hao, Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures, Optics Express 16 (2008) 6717-6730.
[53] Zhong, Liuqiang; Chen, Long; Shu, Shi; Wittum, Gabriel; Xu, Jinchao, Convergence and optimality of adaptive edge finite element methods for time-harmonic Maxwell equations, Math. Comp., 81, 278, 623-642 (2012) · Zbl 1263.78012 · doi:10.1090/S0025-5718-2011-02544-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.