×

Seamless integration of global Dirichlet-to-Neumann boundary condition and spectral elements for transformation electromagnetics. (English) Zbl 1423.78008

Summary: In this paper, we present an efficient spectral-element method (SEM) for solving general two-dimensional Helmholtz equations in anisotropic media, with particular applications in accurate simulation of polygonal invisibility cloaks, concentrators and circular rotators arisen from the field of transformation electromagnetics (TE). In practice, we adopt a transparent boundary condition (TBC) characterised by the Dirichlet-to-Neumann (DtN) map to reduce wave propagation in an unbounded domain to a bounded domain. We then introduce a semi-analytic technique to integrate the global TBC with local curvilinear elements seamlessly, which is accomplished by using a novel elemental mapping and analytic formulas for evaluating global Fourier coefficients on spectral-element grids exactly. From the perspective of TE, an invisibility cloak is devised by a singular coordinate transformation of Maxwell’s equations that leads to anisotropic materials coating the cloaked region to render any object inside invisible to observers outside. An important issue resides in the imposition of appropriate conditions at the outer boundary of the cloaked region, i.e., cloaking boundary conditions (CBCs), in order to achieve perfect invisibility. Following the spirit of [Z. Yang and L.-L. Wang, Commun. Comput. Phys. 17, No. 3, 822–849 (2015; Zbl 1373.78458)], we propose new CBCs for polygonal invisibility cloaks from the essential “pole” conditions related to singular transformations. This allows for the decoupling of the governing equations of inside and outside the cloaked regions. With this efficient spectral-element solver at our disposal, we can study the interesting phenomena when some defects and lossy or dispersive media are placed in the cloaking layer of an ideal polygonal cloak.

MSC:

78A25 Electromagnetic theory (general)
78M22 Spectral, collocation and related methods applied to problems in optics and electromagnetic theory

Citations:

Zbl 1373.78458

References:

[1] Berenger, J. P., A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 2, 185-200 (1994) · Zbl 0814.65129
[2] Jin, J. M.; Volakis, J. L.; Collins, J. D., A finite element-boundary integral method for scattering and radiation by two-and three-dimensional structures, IEEE Antennas. Propag. Mag., 33, 3, 22-32 (1991)
[3] Lin, Y.; Lee, J. H.; Liu, J. G.; Chai, M.; Mix, J. A.; Liu, Q. H., A hybrid SIM-SEM method for 3-D electromagnetic scattering problems, IEEE Trans. Antennas Propag., 57, 11, 3655-3663 (2009) · Zbl 1369.78246
[4] Hagstrom, T., Radiation boundary conditions for the numerical simulation of waves, Acta Numer., 8, 47-106 (1999) · Zbl 0940.65108
[5] Engquist, B.; Majda, A., Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31, 139, 629-651 (1977) · Zbl 0367.65051
[6] Grote, M. J.; Keller, J. B., On non-reflecting boundary conditions, J. Comput. Phys., 122, 231-243 (1995) · Zbl 0841.65099
[7] Nédélec, J. C., Integral representations for harmonic problems, (Acoustic and Electromagnetic Equations. Acoustic and Electromagnetic Equations, Applied Mathematical Sciences, vol. 144 (2001), Springer-Verlag: Springer-Verlag New York) · Zbl 0981.35002
[8] (Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1984), A Wiley-Interscience Publication. John Wiley & Sons Inc.: A Wiley-Interscience Publication. John Wiley & Sons Inc. New York), Reprint of the 1972 edition, Selected Government Publications · Zbl 0643.33001
[9] Fournier, A., Exact calculation of fourier series in nonconforming spectral-element methods, J. Comput. Phys., 215, 1-5 (2006) · Zbl 1089.65140
[11] Pendry, J. B.; Schurig, D.; Smith, D. R., Controlling electromagnetic fields, Science, 312, 5781, 1780-1782 (2006) · Zbl 1226.78003
[12] Leonhardt, U., Optical conformal mapping, Science, 312, 5781, 1777-1780 (2006) · Zbl 1226.78001
[13] Yan, M.; Yan, W.; Qiu, M., Cylindrical superlens by a coordinate transformation, Phys. Rev. B, 78, 12, Article 125113 pp. (2008)
[14] Rahm, M.; Schurig, D.; Roberts, D. A.; Cummer, S. A.; Smith, D. R.; Pendry, J. B., Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of maxwells equations, Phot. Nano. Fund. Appl., 6, 1, 87-95 (2008)
[15] Chen, H. Y.; Chan, C. T., Transformation media that rotate electromagnetic fields, Appl. Phys. Lett., 90, 24, Article 241105 pp. (2007)
[16] Chen, H. Y.; Luo, X. D.; Ma, H. R.; Chan, C. T., The anti-cloak, Opt. Express, 16, 19, 14603-14608 (2008)
[17] Yang, T.; Chen, H. Y.; Luo, X. D.; Ma, H. R., Superscatterer: enhancement of scattering with complementary media, Opt. Express, 16, 22, 18545-18550 (2008)
[18] Rahm, M.; Roberts, D. A.; Pendry, J. B.; Smith, D. R., Transformation-optical design of adaptive beam bends and beam expanders, Opt. Express, 16, 15, 11555-11567 (2008)
[19] Werner, D. H.; Kwon, D. H., Transformation Electromagnetics and Metamaterials (2013), Springer
[20] Greenleaf, A.; Kurylev, Y.; Lassas, M.; Uhlmann, G., Cloaking devices, electromagnetic wormholes, and transformation optics, SIAM Rev., 51, 1, 3-33 (2009) · Zbl 1158.78004
[21] Ruan, Z.; Yan, M.; Neff, C. W.; Qiu, M., Ideal cylindrical cloak: perfect but sensitive to tiny perturbations, Phys. Rev. Lett., 99, 11, Article 113903 pp. (2007)
[22] Zhang, B. L.; Chen, H. S.; Wu, B. I.; Luo, Y.; Ran, L.; Kong, J. A., Response of a cylindrical invisibility cloak to electromagnetic waves, Phys. Rev. B, 76, 12, Article 121101 pp. (2007)
[23] Zhang, B. L., Electrodynamics of transformation-based invisibility cloaking, Light Sci. Appl., 1, 10, e32 (2012)
[24] Cummer, S.; Popa, B.; Schurig, D.; Smith, D.; Pendry, J. B., Full-wave simulations of electromagnetic cloaking structures, Phys. Rev. E, 74, 3, Article 036621 pp. (2006)
[25] Li, J. C.; Huang, Y. Q., Mathematical simulation of cloaking metamaterial structures, Adv. Appl. Math. Mech., 4, 93-101 (2012)
[26] Ma, H.; Qu, S. B.; Xu, Z.; Zhang, J. Q.; Chen, B. W.; Wang, J. F., Material parameter equation for elliptical cylindrical cloaks, Phys. Rev. A, 77, 1, Article 013825 pp. (2008)
[27] Weder, R., The boundary conditions for point transformed electromagnetic invisibility cloaks, J. Phys. A, 41, 41, Article 415401 pp. (2008) · Zbl 1156.35419
[28] Lassas, M.; Zhou, T., Two dimensional invisibility cloaking for Helmholtz equation and non-local boundary conditions, Math. Res. Lett., 18, 3, 473-488 (2011) · Zbl 1241.35045
[29] Lassas, M.; Zhou, T., Singular partial differential operators and pseudo-differential boundary conditions in invisibility cloaking, (Fourier Analysis, Trends in Mathematics (2014), Springer: Springer Switzerland), 263-284 · Zbl 1316.35274
[30] Yang, Z. G.; Wang, L. L., Accurate simulation of ideal circular and elliptic cylindrical invisibility cloaks, Commun. Comput. Phys., 17, 03, 822-849 (2015) · Zbl 1373.78458
[31] Post, E. J., Formal Structure of Electromagnetics: General Covariance and Electromagnetics (1997), Courier Corporation · Zbl 0122.45003
[32] Orfanidis, S. J., Electromagnetic Waves and Antennas (2002), Rutgers University
[33] Monk, P., Finite Element Methods for Maxwell’s Equations, (Numerical Mathematics and Scientific Computation (2003), Oxford University Press: Oxford University Press New York) · Zbl 1024.78009
[34] Adams, R. A.; Fournier, J. J., Sobolev Spaces, Vol. 140 (2003), Academic press · Zbl 1098.46001
[35] Harari, I.; Hughes, T., Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains, Comput. Methods Appl. Mech. Engrg., 97, 103-124 (1992) · Zbl 0769.76063
[36] Hsiao, G. C.; Nigam, N.; Pasciak, J. E.; Xu, L. W., Error analysis of the DtN-FEM for the scattering problem in acoustics via Fourier analysis, J. Comput. Appl. Math., 235, 4949-4965 (2011) · Zbl 1226.65090
[37] Gordon, W. J.; Hall, C. A., Transfinite element methods: blending-function interpolation over arbitrary curved element domains, Numer. Math., 21, 2, 109-129 (1973) · Zbl 0254.65072
[38] Deville, M. O.; Fischer, P. F.; Mund, E. H., High-Order Methods for Incompressible Fluid Flow, Vol. 9 (2002), Cambridge University Press · Zbl 1007.76001
[39] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (2007), Springer · Zbl 1121.76001
[40] Ronchi, C.; Lacono, R.; Paolucci, P. S., The cubed sphere: a new method for the solution of partial differential equations in spherical geometry, J. Comput. Phys., 124, 1, 93-114 (1996) · Zbl 0849.76049
[41] Zhang, J.; Wang, L. L.; Rong, Z. J., A prolate-element method for nonlinear PDEs on the sphere, J. Sci. Comput., 47, 1, 73-92 (2011) · Zbl 1243.76065
[42] Karniadakis, G.; Sherwin, S., Spectral/hp Element Methods for Computational Fluid Dynamics (2005), Oxford University Press · Zbl 1116.76002
[43] Arfken, G. B.; Weber, H. J., Mathematical Methods for Physicists (2001), Harcourt/Academic press · Zbl 0970.00005
[44] Zhang, J. J.; Luo, Y.; Chen, H. S.; Wu, B. I., Cloak of arbitrary shape, J. Opt. Soc. Amer. B Opt. Phys., 25, 11, 1776-1779 (2008)
[45] Jiang, W. X.; Cui, T. J.; Yu, G. X.; Lin, X. Q.; Cheng, Q.; Chin, J. Y., Arbitrarily elliptical-cylindrical invisible cloaking, J. Phys. D: Appl. Phys., 41, 8, Article 085504 pp. (2008)
[46] Kwon, D. H.; Werner, D. H., Two-dimensional eccentric elliptic electromagnetic cloaks, Appl. Phys. Lett., 92, 1, Article 013505 pp. (2008)
[47] Wu, Q.; Zhang, K.; Meng, F. Y.; Li, L. W., Material parameters characterization for arbitrary \(N\)-sided regular polygonal invisible cloak, J. Phys. D: Appl. Phys., 42, 3, Article 035408 pp. (2009)
[48] Zhao, Y.; Argyropoulos, C.; Hao, Y., Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures, Opt. Express, 16, 9, 6717-6730 (2008)
[49] Li, J. C.; Huang, Y. Q.; Yang, W., Developing a time-domain finite-element method for modeling of electromagnetic cylindrical cloaks, J. Comput. Phys., 231, 7, 2880-2891 (2012) · Zbl 1242.78030
[50] Shen, J.; Tang, T.; Wang, L. L., (Spectral Methods: Algorithms, Analysis and Applications. Spectral Methods: Algorithms, Analysis and Applications, Springer Series in Computational Mathematics, vol. 41 (2011), Springer-Verlag: Springer-Verlag Berlin, Heidelberg) · Zbl 1227.65117
[51] Chen, H. S.; Wu, B. I.; Zhang, B. L.; Kong, J. A., Electromagnetic wave interactions with a metamaterial cloak, Phys. Rev. Lett., 99, Article 063903 pp. (2007)
[52] Okada, N.; Cole, J. B., FDTD modeling of a cloak with a nondiagonal permittivity tensor, ISRN Opt., 2012, Article 063903 pp. (2012)
[53] Argyropoulos, C.; Kallos, E.; Hao, Y., Dispersive cylindrical cloaks under nonmonochromatic illumination, Phys. Rev. E, 81, 1, Article 016611 pp. (2010)
[54] Zhang, B. L.; Wu, B. I.; Chen, H. S.; Kong, J. A., Rainbow and blueshift effect of a dispersive spherical invisibility cloak impinged on by a nonmonochromatic plane wave, Phys. Rev. Lett., 101, 6, Article 063902 pp. (2008)
[55] Chen, H. Y.; Liang, Z. X.; Yao, P. J.; Jiang, X. Y.; Ma, H. R.; Chan, C. T., Extending the bandwidth of electromagnetic cloaks, Phys. Rev. B, 76, 24, Article 241104 pp. (2007)
[56] Jiang, W. X.; Cui, T. J.; Cheng, Q.; Chin, J. Y.; Yang, X. M.; Liu, R. P.; Smith, D. R., Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational b-spline surfaces, Appl. Phys. Lett., 92, 26, Article 264101 pp. (2008)
[58] Chen, J. F.; Liu, Q. H., A non-spurious vector spectral element method for Maxwell’s equations, Prog. Electromagn. Res., 96, 205-215 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.