×

Full-wave parallel dispersive finite-difference time-domain modeling of three-dimensional electromagnetic cloaking structures. (English) Zbl 1175.78031

Summary: A parallel dispersive finite-difference time-domain (FDTD) method for the modeling of three-dimensional (3-D) electromagnetic cloaking structures is presented in this paper. The permittivity and permeability of the cloak are mapped to the Drude dispersion model and taken into account in FDTD simulations using an auxiliary differential equation (ADE) method. It is shown that the correction of numerical material parameters and the slow switching-on of source are necessary to ensure stable and convergent single-frequency simulations. Numerical results from wideband simulations demonstrate that waves passing through a three-dimensional cloak experience considerable delay comparing with the free space propagations, as well as pulse broadening and blue-shift effects.

MSC:

78M25 Numerical methods in optics (MSC2010)
78M20 Finite difference methods applied to problems in optics and electromagnetic theory

References:

[1] Pendry, J. B.; Schurig, D.; Smith, D. R., Controlling electromagnetic fields, Science, 312, 1780-1782 (2006) · Zbl 1226.78003
[2] Cummer, S. A.; Popa, B.-I.; Schurig, D.; Smith, D. R., Full-wave simulations of electromagnetic cloaking structures, Phys. Rev. E, 74, 036621 (2006)
[3] Cai, W.; Chettiar, U. K.; Kildishev, A. V.; Shalaev, V. M., Optical cloaking with metamaterials, Nat. Photonics, 1, 224-227 (2007)
[4] Yan, M.; Ruan, Z.; Qiu, M., Scattering characteristics of simplified cylindrical invisibility cloaks, Opt. Express, 15, 17772-17782 (2007)
[5] Cai, W.; Chettiar, U. K.; Kildishev, A. V.; Shalaev, V. M., Nonmagnetic cloak with minimized scattering, Appl. Phys. Lett., 91, 111105 (2007)
[6] Zhang, B.; Chen, H.; Wu, B.-I., Limitations of high-order transformation and incident angle on simplified invisibility cloaks, Opt. Express, 16, 14655-14660 (2008)
[7] Leonhardt, U., Optical conformal mapping, Science, 312, 1777-1780 (2006) · Zbl 1226.78001
[8] Tsang, M.; Psaltis, D., Magnifying perfect lens and superlens design by coordinate transformation, Phys. Rev. B, 77, 035122 (2008)
[9] Chen, H.; Chan, C. T., Transformation media that rotate electromagnetic fields, Appl. Phys. Lett., 90, 241105 (2007)
[10] Rahm, M.; Cummer, S. A.; Schurig, D.; Pendry, J. B.; Smith, D. R., Optical design of reflectionless complex media by finite embedded coordinate transformations, Phys. Rev. Lett., 100, 063903 (2008)
[11] Luo, Y.; Zhang, J.; Ran, L.; Chen, H.; Kong, J. A., Controlling the emission of electromagnetic sources by coordinate transformation, PIERS Online, 4, 795-800 (2008)
[12] Schurig, D.; Mock, J. J.; Justice, B. J.; Cummer, S. A.; Pendry, J. B.; Starr, A. F.; Smith, D. R., Metamaterial electromagnetic cloak at microwave frequencies, Science, 314, 977-980 (2006)
[13] Huang, Y.; Feng, Y.; Jiang, T., Electromagnetic cloaking by layered structure of homogeneous isotropic materials, Opt. Express, 15, 11133-11141 (2007)
[14] I.I. Smolyaninov, Y.J. Hung, C.C. Davis, Electromagnetic cloaking in the visible frequency range (2007). arxiv.org:0709.2862v2; I.I. Smolyaninov, Y.J. Hung, C.C. Davis, Electromagnetic cloaking in the visible frequency range (2007). arxiv.org:0709.2862v2
[15] Schurig, D.; Pendry, J. B.; Smith, D. R., Calculation of material properties and ray tracing in transformation media, Opt. Express, 14, 9794-9804 (2006)
[16] Ruan, Z.; Yan, M.; Neff, C. W.; Qiu, M., Ideal cylindrical cloak: perfect but sensitive to tiny perturbations, Phys. Rev. Lett., 99, 113903 (2007)
[17] Chen, H.; Wu, B.-I.; Zhang, B.; Kong, J. A., Electromagnetic wave interactions with a metamaterial cloak, Phys. Rev. Lett., 99, 063903 (2007)
[18] Luo, Y.; Chen, H.; Zhang, J.; Ran, L.; Kong, J. A., Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations, Phys. Rev. B, 77, 125127 (2008)
[19] Vasic, B.; Isic, G.; Gajic, R.; Hinger, K., Coordinate transformation based design of confined metamaterial structures, Phys. Rev. B, 79, 085103 (2009)
[20] R. Weder, A rigorous time-domain analysis of fullwave electromagnetic cloaking (Invisibility) (2007). arxiv.org:0704.0248v4; R. Weder, A rigorous time-domain analysis of fullwave electromagnetic cloaking (Invisibility) (2007). arxiv.org:0704.0248v4
[21] Blanchard, C.; Porti, J.; Wu, B.-I.; Morente, J. A.; Salinas, A.; Kong, J. A., Time domain simulation of electromagnetic cloaking structures with TLM method, Opt. Express, 16, 6461-6470 (2008)
[22] Zhao, Y.; Argyropoulos, C.; Hao, Y., Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures, Opt. Express, 16, 6717-6730 (2008)
[23] Yee, K. S., Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag., 14, 302-307 (1966) · Zbl 1155.78304
[24] Taflove, A., Computational Electrodynamics: The Finite-Difference Time-Domain Method (2000), Artech House: Artech House Norwood, MA · Zbl 0963.78001
[25] Luebbers, R.; Hunsberger, F. P.; Kunz, K.; Standler, R.; Schneider, M., A frequency-dependent finite-difference time-domain formulation for dispersive materials, IEEE Trans. Electromagnet. Compat., 32, 222-227 (1990)
[26] Gandhi, O. P.; Gao, B.-Q.; Chen, J.-Y., A frequency-dependent finite-difference time-domain formulation for general dispersive media, IEEE Trans. Microw. Theory Tech., 41, 658-664 (1993)
[27] Sullivan, D. M., Frequency-dependent FDTD methods using Z transforms, IEEE Trans. Antennas Propag., 40, 1223-1230 (1992)
[28] Bower, A. F., Applied Mechanics of Solids (2009), CRC Press
[29] Hildebrand, F. B., Introduction to Numerical Analysis (1956), Mc-Graw-Hill: Mc-Graw-Hill New York · Zbl 0070.12401
[30] Lee, J.-Y.; Myung, N.-H., Locally tensor conformal FDTD method for modelling arbitrary dielectric surfaces, Microw. Opt. Tech. Lett., 23, 245-249 (1999)
[31] Zhao, Y.; Belov, P. A.; Hao, Y., Accurate modelling of left-handed metamaterials using a finite-difference time-domain method with spatial averaging at the boundaries, J. Opt. A: Pure Appl. Opt., 9, 468-475 (2007)
[32] http://wwwunix.mcs.anl.gov/mpi/mpich/; http://wwwunix.mcs.anl.gov/mpi/mpich/
[33] Chew, K. C.; Fusco, V. F., A parallel implementation of the finite-difference time-domain algorithm, Int. J. Numer. Model., 8, 293-299 (1995)
[34] Gedney, S., Finite-difference time-domain analysis of microwave circuit devices on high performance vector/parallel computers, IEEE Trans. Microw. Theory Tech., 43, 2510-2514 (1995)
[35] Berenger, J. R., A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185 (1994) · Zbl 0814.65129
[36] Chen, H.; Chan, C. T., Time delays and energy transport velocities in three-dimensional ideal cloaking devices, J. Appl. Phys., 104, 033113 (2008)
[37] Liang, Z.; Yao, P.; Sun, X.; Jiang, X., The physical picture and the essential elements of the dynamical process for dispersive cloaking structures, Appl. Phys. Lett., 92, 131118 (2008)
[38] Zhang, B.; Wu, B.-I.; Chen, H.; Kong, J. A., Rainbow and blueshift effect of a dispersive spherical invisibility cloak impinged on by a nonmonochromatic plane wave, Phys. Rev. Lett., 101, 063902 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.