×

Algebro-geometric integration of the Q1 lattice equation via nonlinear integrable symplectic maps. (English) Zbl 1475.37083

The authors study the algebro-geometric solutions of the Q1 quadrilateral lattice equation, \[\beta_1^2 (\tilde{\bar{u}}-\tilde{u})(\bar{u} - u) - \beta_2^2(\bar{\tilde{u}}- \bar{u})(\tilde{u} - u) + \delta^2 \beta_1^2\beta_2^2(\beta_1^2 - \beta_2^2) = 0. \] Here the functions \(u = u_{m,n}\) depend on two discrete independent variables \(m, n \in\mathbb{Z}\) forming a regular lattice with coordinates \((m,n)\in\mathbb{Z}^2\). Elementary lattice shifts are denoted by \(\tilde{u}= u_{m + 1,n}\), \(\bar{u}= u_{m,n+1}\). The above equation is a member in the well-known Adler-Bobenko-Suris (ABS) list of 3D consistent lattices, where \(\beta_1\), \(\beta_2\) are (lattice) parameters associated with the two lattice directions, while \(\delta \) is a fixed parameter.
A novel Lax pair for the Q1 equation is given. By the method of multidimensional consistency a basic discrete spectral problem is derived: \(\tilde{\chi}={\mathcal{D}}^{(\beta )}(\lambda ,b)\chi\), with \[ {\mathcal{D}}^{(\beta )}(\lambda ,b) = 1/B \begin{pmatrix} \lambda b & \lambda^2\delta^2\beta+\beta B^2\\ \beta & \lambda b \end{pmatrix}, \] where \(B=(b^2-\delta^2\beta^2)^{1/2}\) and \(\beta b = \tilde{u}-u\). This can be nonlinearized to produce integrable symplectic maps. Having this in mind, a Riemann theta function expression for the discrete potential is derived with the aid of the Baker-Akhiezer functions. This expression leads to the algebro-geometric integration of the Q1 lattice equation, based on the commutativity of discrete phase flows generated from the iteration of integrable symplectic maps. The integrability of the symplectic maps is studied with the aid of the \(r\)-matrix formulation.

MSC:

37K60 Lattice dynamics; integrable lattice equations
37K20 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with algebraic geometry, complex analysis, and special functions
37J11 Symplectic and canonical mappings
39A14 Partial difference equations
39A36 Integrable difference and lattice equations; integrability tests

References:

[1] Hietarinta, J.; Joshi, N.; Nijhoff, F. W., Discrete Systems and Integrability (2016), Cambridge: Cambridge University Press, Cambridge · Zbl 1362.37130
[2] Babelon, O.; Bernard, D.; Talon, M., Introduction to Classical Integrable Systems (2003), Cambridge: Cambridge University Press, Cambridge · Zbl 1045.37033
[3] Bobenko, A. I.; Yu, S., Discrete Differential Geometry (2009), Berlin: Springer, Berlin
[4] Adler, V. E.; Bobenko, A. I.; Suris, Y. B., Classification of integrable equations on quad-graphs. The consistency approach, Commun. Math. Phys., 233, 513-543 (2003) · Zbl 1075.37022 · doi:10.1007/s00220-002-0762-8
[5] Nijhoff, F.; Capel, H., The discrete Korteweg-de Vries equation, Acta Appl. Math., 39, 133-158 (1995) · Zbl 0841.58034 · doi:10.1007/bf00994631
[6] Nijhoff, F.; Atkinson, J.; Hietarinta, J., Soliton solutions for ABS lattice equations: I. Cauchy matrix approach, J. Phys. A: Math. Theor., 42 (2009) · Zbl 1184.35281 · doi:10.1088/1751-8113/42/40/404005
[7] Nijhoff, F. W.; Atkinson, J., Elliptic N-soliton solutions of ABS lattice equations, Int. Math. Res. Not., 2010, 3837-3895 (2010) · Zbl 1217.37068 · doi:10.1093/imrn/rnq010
[8] Atkinson, J.; Nijhoff, F., A constructive approach to the soliton solutions of integrable quadrilateral lattice equations, Commun. Math. Phys., 299, 283-304 (2010) · Zbl 1198.35205 · doi:10.1007/s00220-010-1076-x
[9] Krichever, I. M.; Novikov, S. P., Holomorphic bundles over algebraic curves and nonlinear equations, Russ. Math. Surv., 35, 53-79 (1980) · Zbl 0548.35100 · doi:10.1070/rm1980v035n06abeh001974
[10] Weiss, J., The Painlevé property for partial differential equations. II: Bäcklund transformations, Lax pairs, and the Schwarzian derivative, J. Math. Phys., 24, 1405-1413 (1983) · Zbl 0531.35069 · doi:10.1063/1.525875
[11] Bobenko, A.; Pinkall, U., Discrete surfaces with constant negative Gaussian curvature and the Hirota equation, J. Differ. Geom., 43, 527-611 (1996) · Zbl 1059.53500 · doi:10.4310/jdg/1214458324
[12] Hertrich-Jeromin, U.; McIntosh, I.; Norman, P.; Pedit, F., Periodic discrete conformal maps, J. Reine Angew. Math., 534, 129-153 (2001) · Zbl 0986.37063 · doi:10.1515/crll.2001.038
[13] Xu, X.; Jiang, M.; Nijhoff, F. W., Integrable symplectic maps associated with discrete Korteweg-de Vries‐type equations, Stud. Appl. Math., 146, 233-278 (2020) · Zbl 1476.37080 · doi:10.1111/sapm.12346
[14] Xu, X.; Cao, C.; Zhang, G., Finite genus solutions to the lattice Schwarzian Korteweg-de Vries equation, J. Nonlinear Math. Phys., 27, 633-646 (2020) · Zbl 1441.37076 · doi:10.1080/14029251.2020.1819608
[15] Cao, C. W., Nonlinearization of the Lax system for AKNS hierarchy, Sci. China Ser. A, 33, 528-536 (1990) · Zbl 0714.58026
[16] Cao, C. W., A classical integrable system and the involutive representation of solutions of the KdV equations, Acta Math. Sin., 7, 216-223 (1991) · Zbl 0739.58027 · doi:10.1007/BF02582998
[17] Cao, C.; Xu, X., A finite genus solution of the H1 model, J. Phys. A: Math. Theor., 45 (2012) · Zbl 1234.35216 · doi:10.1088/1751-8113/45/5/055213
[18] Cao, C.; Zhang, G., A finite genus solution of the Hirota equation via integrable symplectic maps, J. Phys. A: Math. Theor., 45 (2012) · Zbl 1248.37062 · doi:10.1088/1751-8113/45/9/095203
[19] Shi, Y.; Zhang, D. J., Rational solutions of the H3 and Q1 models in the ABS lattice list, Symmetry, Integrability Geometry Methods Appl., 7, 1-11 (2011) · Zbl 1218.37094 · doi:10.3842/SIGMA.2011.046
[20] Matveev, V. B., 30 years of finite-gap integration theory, Phil. Trans. R. Soc. A, 366, 837-875 (2008) · Zbl 1153.37419 · doi:10.1098/rsta.2007.2055
[21] Quispel, G. R W.; Roberts, J. A G.; Thompson, C. J., Integrable mappings and soliton equations, Phys. Lett. A, 126, 419-421 (1988) · Zbl 0679.58023 · doi:10.1016/0375-9601(88)90803-1
[22] Veselov, A. P., Integrable maps, Russ. Math. Surv., 46, 3-45 (1991) · Zbl 0785.58027 · doi:10.1070/rm1991v046n05abeh002856
[23] Veselov, A. P., What Is an Integrable Mapping? What Is Integrability? (1991), Berlin: Springer, Berlin · Zbl 0733.58025
[24] Bruschi, M.; Ragnisco, O.; Santini, P. M.; Gui-Zhang, T., Integrable symplectic maps, Physica D, 49, 273-294 (1991) · Zbl 0734.58023 · doi:10.1016/0167-2789(91)90149-4
[25] Suris, Y. B., The Problem of Integrable Discretization: Hamiltonian Approach (2003), Basel: Birkhäuser, Basel · Zbl 1033.37030
[26] Cao, C.; Zhang, G., Integrable symplectic maps associated with the ZS-AKNS spectral problem, J. Phys. A: Math. Theor., 45 (2012) · Zbl 1387.37069 · doi:10.1088/1751-8113/45/26/265201
[27] Nijhoff, F. W., Lax pair for the Adler (lattice Krichever-Novikov) system, Phys. Lett. A, 297, 49-58 (2002) · Zbl 0994.35105 · doi:10.1016/s0375-9601(02)00287-6
[28] Adler, V. E.; Suris, Y., Q4: integrable master equation related to an elliptic curve, Int. Math. Res. Not., 2004, 2523-2553 (2004) · Zbl 1081.37038 · doi:10.1155/s107379280413273x
[29] Adler, V., Bäcklund transformation for the Krichever-Novikov equation, Int. Math. Res. Not., 1998, 1-4 (1998) · Zbl 0895.35089 · doi:10.1155/s1073792898000014
[30] Levi, D.; Benguria, R., Bäcklund transformations and nonlinear differential difference equations, Proc. Natl Acad. Sci., 77, 5025-5027 (1980) · Zbl 0453.35072 · doi:10.1073/pnas.77.9.5025
[31] Levi, D., Nonlinear differential difference equations as Bäcklund transformations, J. Phys. A: Math. Gen., 14, 1083-1098 (1981) · Zbl 0465.35081 · doi:10.1088/0305-4470/14/5/028
[32] Belokolos, E. D.; Bobenko, A. I.; Enolskij, V. Z.; Its, A. R.; Matveev, V. B., Algebro-Geometric Approach to Nonlinear Integrable Equations (1994), Berlin: Spinger, Berlin · Zbl 0809.35001
[33] Bobenko, A. I.; Bordag, L. A., Qualitative analysis of finite-zonal solutions of the KdV equation with the help of an automorphic approach, Zap. Nauchn. Sem. LOMI, 165, 31-41 (1987) · Zbl 0669.35097
[34] Bobenko, A. I.; Bordag, L. A., Periodic multiphase solutions of the KP equation, J. Phys. A: Math. Gen., 22, 1259-1274 (1989) · Zbl 0692.35082 · doi:10.1088/0305-4470/22/9/016
[35] Burchnall, J. L.; Chaundy, T. W., Commutative ordinary differential operators, Proc. Lond. Math. Soc., s2-21, 420-440 (1923) · JFM 49.0311.03 · doi:10.1112/plms/s2-21.1.420
[36] Burchnall, J. L.; Chaundy, T. W., Commutative ordinary differential operators, Proc. R. Soc. A, 118, 557-583 (1928) · JFM 54.0439.01 · doi:10.1098/rspa.1928.0069
[37] Naiman, P. B., On the theory of periodic and limit-periodic Jacobian matrices, Dokl. Akad. Nauk SSSR, 143, 277-279 (1962) · Zbl 0118.11003
[38] Glazman, I. M., Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators (1963), Moscow: Fizmatgiz, Moscow · Zbl 0143.36504
[39] Akhiezer, N. I., Continuous analogues of orthogonal polynomials on a system of intervals, Dokl. Akad. Nauk SSSR, 141, 263-266 (1961) · Zbl 0109.29602
[40] Its, A. R.; Matveev, V. B., Schrödinger operators with the finite-band spectrum and the N-soliton solutions of the Korteweg-de Vries equation, Theor. Math. Phys., 23, 343-355 (1975) · doi:10.1007/bf01038218
[41] Krichever, I. M., Methods of algebraic geometry in the theory of non-linear equations, Russ. Math. Surv., 32, 185-213 (1977) · Zbl 0386.35002 · doi:10.1070/rm1977v032n06abeh003862
[42] Akhiezer, N. I., Orthogonal polynomials on several intervals, Dokl. Akad. Nauk SSSR, 134, 9-12 (1960) · Zbl 0101.29205
[43] Kac, M.; van Moerbeke, P., On some periodic Toda lattices, Proc. Natl Acad. Sci., 72, 1627-1629 (1975) · Zbl 0343.34003 · doi:10.1073/pnas.72.4.1627
[44] Dubrovin, B. A.; Matveev, V. B.; Novikov, S. P., Nonlinear equations of Korteweg-de Vries type, finite-zone linear operators and Abelian varieties, Russ. Math. Surv., 31, 56-134 (1976) · Zbl 0346.35025 · doi:10.1070/rm1976v031n01abeh001446
[45] Date, E.; Tanaka, S., Periodic multi-soliton solutions of Korteweg-de Vries equation and Toda lattice, Prog. Theor. Phys. Suppl., 59, 107-125 (1976) · doi:10.1143/ptps.59.107
[46] Flaschka, H.; McLaughlin, D. W., Canonically conjugate variables for the Korteweg-de Vries Equation and Toda lattice with periodic boundary conditions, Prog. Theor. Phys., 55, 438-456 (1976) · Zbl 1109.35374 · doi:10.1143/ptp.55.438
[47] Mumford, D.; van Moerbeke, P., Spectrum of difference operators and algebraic curve, Acta Math., 143, 93-154 (1979) · Zbl 0502.58032 · doi:10.1007/BF02392090
[48] Krichever, I. M.; Novikov, S. P., Two-dimensional Toda lattice, commuting difference operators and holomorphic bundles, Russ. Math. Surv., 58, 50-88 (2003) · Zbl 1060.37068 · doi:10.1070/rm2003v058n03abeh000628
[49] Gesztesy, F.; Holden, H.; Michor, J.; Teschl, G., Soliton Equations and There Algebro-Geometric Solutions (2009), Cambridge: Cambridge University Press, Cambridge
[50] Geng, X.; Wei, J.; Zeng, X., Algebro-geometric integration of the modified Belov-Chaltikian lattice hierarchy, Theor. Math. Phys., 199, 675-694 (2019) · Zbl 1429.37041 · doi:10.1134/s0040577919050052
[51] Arnold, V. I., Mathematical Methods in Classical Mechanics (1978), Berlin: Springer, Berlin · Zbl 0386.70001
[52] Goldstein, H., Classical Mechanics (1980), Reading, MA: Addison-Wesley, Reading, MA · Zbl 0491.70001
[53] Jordan, T. F., Steppingstones in Hamiltonian dynamics, Am. J. Phys., 72, 1095-1099 (2004) · Zbl 1219.70049 · doi:10.1119/1.1737394
[54] Griffiths, P.; Harris, J., Principles of Algebraic Geometry (1978), New York: Wiley, New York · Zbl 0408.14001
[55] Mumford, D., Tata Lectures on Theta I (1983), Boston, MA: Birkhäuser, Boston, MA · Zbl 0509.14049
[56] Farkas, H. M.; Kra, I., Riemann Surfaces (1992), New York: Springer, New York · Zbl 0764.30001
[57] Faddeev, L. D.; Takhtajan, L. A., Hamiltonian Methods in the Theory of Solitons (1987), Berlin: Springer, Berlin · Zbl 0632.58004
[58] Gerdjikov, V. S.; Vilasi, G.; Yanovski, A. B., Integrable Hamiltonian Hierarchies (2008), Berlin: Springer, Berlin · Zbl 1167.37001
[59] Cao, C.; Geng, X.; Wu, Y., From the special 2 + 1 Toda lattice to the Kadomtsev-Petviashvili equation, J. Phys. A: Math. Gen., 32, 8059-8078 (1999) · Zbl 0977.37036 · doi:10.1088/0305-4470/32/46/306
[60] Lamé, G., Leçons sur les Coordonnées Curvilignes et leurs Diverses Applications (1859), Paris: Mallet-Bachelier, Paris
[61] Dubrovin, B. A., Periodic problems for the Korteweg-de Vries equation in the class of finite band potentials, Funct. Anal. Appl., 9, 215-223 (1975) · Zbl 0315.35072 · doi:10.1007/bf01078183
[62] Nijhoff, F. W., Discrete Dubrovin equations and separation of variables for discrete systems, Chaos Solitons Fractals, 11, 19-28 (2000) · Zbl 1115.37349 · doi:10.1016/s0960-0779(98)00264-1
[63] Baker, H. F., Note on the foregoing paper, ‘commutative ordinary differential operators’, by J L Burchnall and J W Chaundy, Proc. R. Soc. A, 118, 584-593 (1928) · JFM 54.0439.02 · doi:10.1098/rspa.1928.0070
[64] Krichever, I. M., An algebraic-geometrical construction of the Zakharov-Shabat equations and their periodic solutions, Dokl. Akad. Nauk SSSR, 227, 291-294 (1976)
[65] Krichever, I. M., Integration of nonlinear equations by methods of algebraic geometry, Funct. Anal. Appl., 11, 12-26 (1977) · Zbl 0368.35022 · doi:10.1007/bf01135528
[66] Toda, M., Theory of Nonlinear Lattices (1981), Berlin: Springer, Berlin · Zbl 0465.70014
[67] Atkinson, J.; Hietarinta, J.; Nijhoff, F., Soliton solutions for Q3, J. Phys. A: Math. Theor., 41 (2008) · Zbl 1136.37036 · doi:10.1088/1751-8113/41/14/142001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.