×

Algebro-geometric integration of the modified Belov-Chaltikian lattice hierarchy. (English. Russian original) Zbl 1429.37041

Theor. Math. Phys. 199, No. 2, 675-694 (2019); translation from Teor. Mat. Fiz. 199, No. 2, 235-256 (2019).
Summary: Using the Lenard recurrence relations and the zero-curvature equation, we derive the modified Belov-Chaltikian lattice hierarchy associated with a discrete \(3 \times 3\) matrix spectral problem. Using the characteristic polynomial of the Lax matrix for the hierarchy, we introduce a trigonal curve \(K_{m -2}\) of arithmetic genus \(m- 2\). We study the asymptotic properties of the Baker-Akhiezer function and the algebraic function carrying the data of the divisor near \(P_{\infty_1}\), \(P_{\infty_2}\), \(P_{\infty_3}\), and \(P_0\) on \(K_{m -2} \). Based on the theory of trigonal curves, we obtain the explicit theta-function representations of the algebraic function, the Baker-Akhiezer function, and, in particular, solutions of the entire modified Belov-Chaltikian lattice hierarchy.

MSC:

37K20 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with algebraic geometry, complex analysis, and special functions
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
14H70 Relationships between algebraic curves and integrable systems
Full Text: DOI

References:

[1] M. Toda, “Waves in nonlinear lattice,” Progr. Theor. Phys. Suppl., 45, 174-200 (1970). · doi:10.1143/PTPS.45.174
[2] M. Toda, Theory of Nonlinear Lattices (Springer Ser. Solid-State Sci., Vol. 20), Springer, Berlin (1982). · Zbl 0465.70014
[3] M. Kac and P. van Moerbeke, “On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices,” Adv. Math., 16, 160-169 (1975). · Zbl 0306.34001 · doi:10.1016/0001-8708(75)90148-6
[4] V. E. Zakharov, S.V. Manakov, S.P. Novikov, and, L. P. Pitaevskii, Theory of Solitons: The Inverse Scattering Methods [in Russian], Nauka, Moscow (1980); English transl.: S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Consultants Bureau, New York (1984). · Zbl 0598.35003
[5] R. Hirota, “Exact <Emphasis Type=”Italic“>N-soliton of nonlinear lumped self-dual network equations,” J. Phys. Soc. Japan, 35, 289-294 (1973). · doi:10.1143/JPSJ.35.289
[6] M. J. Ablowitz and J. F. Ladik, “Nonlinear differential-difference equations,” J. Math. Phys., 16, 598-603 (1975). · Zbl 0296.34062 · doi:10.1063/1.522558
[7] R. Hirota and J. Satsuma, “A variety of nonlinear network equations generated from the Backlund transformation for the Toda lattice,” Progr. Theor. Phys. Suppl., 59, 64-100 (1975). · doi:10.1143/PTPS.59.64
[8] Yu. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach (Progr. Math., Vol. 219), Birkhäuser, Basel (2003). · Zbl 1033.37030 · doi:10.1007/978-3-0348-8016-9
[9] E. Date and S. Tanaka, “Periodic multi-soliton solutions of Korteweg – de Vries equation and Toda lattice,” Progr. Theor. Phys. Suppl., 59, 107-125 (1976). · doi:10.1143/PTPS.59.107
[10] I. M. Krichever, “Integration of nonlinear equations by the methods of algebraic geometry,” Funct. Anal. Appl., 11, 12-26 (1977). · Zbl 0368.35022 · doi:10.1007/BF01135528
[11] B. A. Dubrovin, “Theta functions and non-linear equations,” Russian Math. Surveys, 36, No. 2, 11-92 (1981). · Zbl 0478.58038 · doi:10.1070/RM1981v036n02ABEH002596
[12] Y. C. Ma and M. J. Ablowitz, “The periodic cubic Schröodinger equation,” Stud. Appl. Math., 65, 113-158 (1981). · Zbl 0493.35032 · doi:10.1002/sapm1981652113
[13] E. Previato, “Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schröodinger equation,” Duke Math. J., 52, 329-377 (1985). · Zbl 0578.35086 · doi:10.1215/S0012-7094-85-05218-4
[14] S. J. Alber, “On finite-zone solutions of relativistic Toda lattices,” Lett. Math. Phys., 17, 149-155 (1989). · Zbl 0696.58021 · doi:10.1007/BF00402329
[15] P. D. Miller, N. N. Ercolani, I. M. Krichever, and C. D. Levermore, “Finite genus solutions to the Ablowitz-Ladik equations,” Commun. Pure Appl. Math., 48, 1369-1440 (1995). · Zbl 0869.34065 · doi:10.1002/cpa.3160481203
[16] C. W. Cao, Y. T. Wu, and X. G. Geng, “Relation between the Kadomtsev-Petviashvili equation and the confocal involutive system,” J. Math. Phys., 40, 3948-3970 (1999). · Zbl 0947.35138 · doi:10.1063/1.532936
[17] X. G. Geng and C. W. Cao, “Decomposition of the (2+1)-dimensional Gardner equation and its quasi-periodic solutions,” Nonlinearity, 14, 1433-1452 (2001). · Zbl 1160.37405 · doi:10.1088/0951-7715/14/6/302
[18] E. D. Belokolos, A. I. Bobenko, V. Z. Enol’skii, A. R. Its, and V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin (1994). · Zbl 0809.35001
[19] S. Ahmad and A. R. Chowdhury, “The quasi-periodic solutions to the discrete nonlinear Schröodinger equation,” J. Math. Phys., 28, 134-137 (1987). · Zbl 0615.35076 · doi:10.1063/1.527794
[20] S. Ahmad and A. R. Chowdhury, “On the quasi-periodic solutions to the discrete nonlinear Schröodinger equation,” J. Phys. A: Math. Gen., 20, 293-303 (1987). · Zbl 0663.35083 · doi:10.1088/0305-4470/20/2/015
[21] X. G. Geng, H. H. Dai, and J. Y. Zhu, “Decomposition of the discrete Ablowitz-Ladik hierarchy,” Stud. Appl. Math., 118, 281-312 (2007). · Zbl 1533.37153 · doi:10.1111/j.1467-9590.2007.00374.x
[22] F. Gesztesy, H. Holden, J. Michor, and G. Teschl, Soliton Equations and Their Algebro-Geometric Solutions, Vol. 2, (1+1)-Dimensional Discrete Models, Cambridge Univ. Press, Cambridge (2008). · Zbl 1151.37056 · doi:10.1017/CBO9780511543203
[23] H. Airault, H. P. McKean, and J. Moser, “Rational and elliptic solutions of the Korteweg – de Vries equation and a related many-body problem,” Commun. Pure Appl. Math., 30, 95-148 (1977). · Zbl 0338.35024 · doi:10.1002/cpa.3160300106
[24] A. O. Smirnov, “A matrix analogue of Appell’s theorem and reductions of multidimensional Riemann theta-functions,” Math. USSR Sb., 61, 379-388 (1988). · Zbl 0677.33002 · doi:10.1070/SM1988v061n02ABEH003213
[25] H. P. McKean, “Integrable systems and algebraic curves,” in: Global Analysis (Lect. Notes Math., Vol. 755, M. Adler, M. Grmela, and J. E. Marsden, eds.), Springer, Berlin (1979), pp. 83-200. · Zbl 0449.35080
[26] Previato, E.; Verdier, J. L.; Ramanan, S. (ed.); Beuaville, A. (ed.), Boussinesq elliptic solitons: The cyclic case, 173-185 (1993), Dehli · Zbl 0844.14016
[27] V. B. Matveev and A. O. Smirnov, “On the Riemann theta function of a trigonal curve and solutions of the Boussinesq and KP equations,” Lett. Math. Phys., 14, 25-31 (1987). · Zbl 0641.35061 · doi:10.1007/BF00403466
[28] E. Previato, “Monodromy of Boussinesq elliptic operators,” Acta Appl. Math., 36, 49-55 (1994). · Zbl 0837.33012 · doi:10.1007/BF01001542
[29] Y. V. Brezhnev, “Finite-band potentials with trigonal curves,” Theor. Math. Phys., 133, 1657-1662 (2002). · Zbl 1087.34561 · doi:10.1023/A:1021310208404
[30] J. C. Eilbeck, V. Z. Enolski, S. Matsutani, Y. Ônishi, and E. Previato, “Abelian functions for trigonal curves of genus three,” Int. Math. Res. Not., 2007, 140. · Zbl 1210.14032
[31] S. Baldwin, J. C. Eilbeck, J. Gibbons, and Y. Ônishi, “Abelian functions for cyclic trigonal curves of genus 4,” J. Geom. Phys., 58, 450-467 (2008); arXiv:math/0612654v1 (2006). · Zbl 1211.37082 · doi:10.1016/j.geomphys.2007.12.001
[32] Y. Onishi, “Abelian functions for trigonal curves of degree four and determinantal formulae in purely trigonal case,” Internat. J. Math., 20, 427-441 (2009). · Zbl 1222.14066 · doi:10.1142/S0129167X09005340
[33] R. Dickson, F. Gesztesy, and K. Unterkofler, “A new approach to the Boussinesq hierarchy,” Math. Nachr., 198, 51-108 (1999). · Zbl 0978.35049 · doi:10.1002/mana.19991980105
[34] R. Dickson, F. Gesztesy, and K. Unterkofler, “Algebro-geometric solutions of the Boussinesq hierarchy,” Rev. Math. Phys., 11, 823-879 (1999). · Zbl 0971.35065 · doi:10.1142/S0129055X9900026X
[35] X. G. Geng, L. H. Wu, and G. L. He, “Algebro-geometric constructions of the modified Boussinesq flows and quasi-periodic solutions,” Phys. D, 240, 1262-1288 (2011). · Zbl 1223.37093 · doi:10.1016/j.physd.2011.04.020
[36] X. G. Geng, L. H. Wu, and G. L. He, “Quasi-periodic solutions of the Kaup-Kupershmidt hierarchy,” J. Nonlinear Sci., 23, 527-555 (2013). · Zbl 1309.37070 · doi:10.1007/s00332-012-9160-3
[37] X. G. Geng, Y. Y. Zhai, and H. H. Dai, “Algebro-geometric solutions of the coupled modified Korteweg – de Vries hierarchy,” Adv. Math., 263, 123-153 (2014). · Zbl 1304.37046 · doi:10.1016/j.aim.2014.06.013
[38] Y. T. Wu and X. G. Geng, “A finite-dimensional integrable system associated with the three-wave interaction equations,” J. Math. Phys., 40, 3409-3430 (1999). · Zbl 0955.37034 · doi:10.1063/1.532896
[39] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, New York (1994). · Zbl 0836.14001 · doi:10.1002/9781118032527
[40] D. Mumford, Tata Lectures on Theta, Vols. 1 and 2 (Progr. Math., Vols. 28 and 43), Birkhäuser, Boston (1984). · Zbl 0549.14014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.