×

Growth of a renormalized operator as a probe of chaos. (English) Zbl 1499.37064

Summary: We propose that the size of an operator evolved under holographic renormalization group flow shall grow linearly with the scale and interpret this behavior as a manifestation of the saturation of the chaos bound. To test this conjecture, we study the operator growth in two different toy models. The first one is a MERA-like tensor network built from a random unitary circuit with the operator size defined using the integrated out-of-time-ordered correlator (OTOC). The second model is an error-correcting code of perfect tensors, and the operator size is computed using the number of single-site physical operators that realize the logical operator. In both cases, we observe linear growth.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37E20 Universality and renormalization of dynamical systems

Software:

ITensor

References:

[1] Maldacena, J.; Shenker, S. H.; Stanford, D., A bound on chaos, Journal of High Energy Physics, 2016, 8, article 106 (2016) · Zbl 1390.81388 · doi:10.1007/JHEP08(2016)106
[2] Cotler, J.; Hunter-Jones, N.; Liu, J.; Yoshida, B., Chaos, complexity, and random matrices, Journal of High Energy Physics, 2017, article 048 (2017) · Zbl 1383.83050 · doi:10.1007/JHEP11(2017)048
[3] Roberts, D. A.; Stanford, D.; Streicher, A., Operator growth in the SYK model, Journal of High Energy Physics, 2018, 6, article 122 (2018) · Zbl 1395.81244 · doi:10.1007/JHEP06(2018)122
[4] Qi, X.-L.; Streicher, A., Quantum epidemiology: operator growth, thermal effects, and SYK, Journal of High Energy Physics, 2019, article 12 (2019) · Zbl 1421.83103 · doi:10.1007/JHEP08(2019)012
[5] Blake, M.; Lee, H.; Liu, H., A quantum hydrodynamical description for scrambling and many-body chaos, Journal of High Energy Physics, 2018, 10, article 127 (2018) · Zbl 1402.81163 · doi:10.1007/JHEP10(2018)127
[6] Blake, M.; Liu, H., On systems of maximal quantum chaos, Journal of High Energy Physics, 2021, 5, article 229 (2021) · Zbl 1466.81027 · doi:10.1007/JHEP05(2021)229
[7] Vidal, G., Entanglement renormalization: an introduction (2009), https://arxiv.org/abs/0912.1651
[8] Swingle, B., Entanglement renormalization and holography, Physical Review D, 86, 6, article 065007 (2012) · doi:10.1103/PhysRevD.86.065007
[9] Swingle, B., Constructing holographic spacetimes using entanglement renormalization (2012), https://arxiv.org/abs/1209.3304
[10] Miyaji, M.; Takayanagi, T., Surface/state correspondence as a generalized holography, Progress of Theoretical and Experimental Physics, 2015, article 073B03, 7 (2015) · Zbl 1348.81458 · doi:10.1093/ptep/ptv089
[11] Miyaji, M.; Takayanagi, T.; Watanabe, K., From path integrals to tensor networks for the AdS/CFT correspondence, Physical Review D, 95, 6, article 066004 (2017) · doi:10.1103/PhysRevD.95.066004
[12] Caputa, P.; Kundu, N.; Miyaji, M.; Takayanagi, T.; Watanabe, K., Anti-de Sitter space from optimization of path integrals in conformal field theories, Physical Review Letters, 119, 7, article 071602 (2017) · doi:10.1103/PhysRevLett.119.071602
[13] Caputa, P.; Kundu, N.; Miyaji, M.; Takayanagi, T.; Watanabe, K., Liouville action as path-integral complexity: from continuous tensor networks to AdS/CFT, Journal of High Energy Physics, 2017, 11, article 97 (2017) · Zbl 1383.81189 · doi:10.1007/JHEP11(2017)097
[14] Susskind, L., Complexity and Newton’s laws, Frontiers in Physiology, 8, 262 (2020) · doi:10.3389/fphy.2020.00262
[15] Susskind, L.; Zhao, Y., Complexity and momentum, Journal of High Energy Physics, 2021, 3, article 239 (2020) · Zbl 1461.83021 · doi:10.1007/JHEP03(2021)239
[16] Nahum, A.; Ruhman, J.; Vijay, S.; Haah, J., Quantum entanglement growth under random unitary dynamics, Physical Review X, 7, 3, article 031016 (2017) · doi:10.1103/PhysRevX.7.031016
[17] Keselman, A.; Nie, L.; Berg, E., Scrambling and Lyapunov exponent in spatially extended systems, Physical Review B, 103, 12, L121111 (2021) · doi:10.1103/PhysRevB.103.L121111
[18] Pastawski, F.; Yoshida, B.; Harlow, D.; Preskill, J., Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence, Journal of High Energy Physics, 2015, article 149 (2015) · Zbl 1388.81094 · doi:10.1007/JHEP06(2015)149
[19] Huang, X.; Lin, F.-L., Entanglement renormalization and integral geometry, Journal of High Energy Physics, 2015, 12, 1-35 (2015) · Zbl 1388.81374 · doi:10.1007/JHEP12(2015)081
[20] Fishman, M.; White, S. R.; Stoudenmire, E. M., The ITensor software library for tensor network calculations, SciPost Physics Codebases, 4 (2022)
[21] Jafferis, D. L.; Lewkowycz, A.; Maldacena, J.; Suh, S. J., Relative entropy equals bulk relative entropy, Journal of High Energy Physics, 2016, article 4 (2016) · Zbl 1388.83268 · doi:10.1007/JHEP06(2016)004
[22] Dong, X.; Harlow, D.; Wall, A. C., Reconstruction of bulk operators within the entanglement wedge in gauge-gravity duality, Physical Review Letters, 117, 2, article 021601 (2016) · doi:10.1103/PhysRevLett.117.021601
[23] Almheiri, A.; Dong, X.; Harlow, D., Bulk locality and quantum error correction in AdS/CFT, Journal of High Energy Physics, 2015, 4, 163 (2015) · Zbl 1388.81095 · doi:10.1007/JHEP04(2015)163
[24] Chagnet, N.; Chapman, S.; de Boer, J.; Zukowski, C., Complexity for conformal field theories in general dimensions, Physical Review Letters, 128, 5, article 051601 (2022) · doi:10.1103/PhysRevLett.128.051601
[25] Goto, K.; Takayanagi, T., CFT descriptions of bulk local states in the AdS black holes, Journal of High Energy Physics, 2017, 10, 153 (2017) · Zbl 1383.83057 · doi:10.1007/JHEP10(2017)153
[26] Parker, D. E.; Cao, X.; Avdoshkin, A.; Scaffidi, T.; Altman, E., A universal operator growth hypothesis, Physical Review X, 9, 4, article 041017 (2019) · doi:10.1103/PhysRevX.9.041017
[27] Kar, A.; Lamprou, L.; Rozali, M.; Sully, J., Random matrix theory for complexity growth and black hole interiors, Journal of High Energy Physics, 2022, article 16 (2022) · Zbl 1521.83125 · doi:10.1007/JHEP01(2022)016
[28] Caputa, P.; Datta, S., Operator growth in 2d CFT, Journal of High Energy Physics, 2021, article 188 (2021) · Zbl 1521.81291 · doi:10.1007/JHEP12(2021)188
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.