×

Chaos, complexity, and random matrices. (English) Zbl 1383.83050

Summary: Chaos and complexity entail an entropic and computational obstruction to describing a system, and thus are intrinsically difficult to characterize. In this paper, we consider time evolution by Gaussian Unitary Ensemble (GUE) Hamiltonians and analytically compute out-of-time-ordered correlation functions (OTOCs) and frame potentials to quantify scrambling, Haar-randomness, and circuit complexity. While our random matrix analysis gives a qualitatively correct prediction of the late-time behavior of chaotic systems, we find unphysical behavior at early times including an \( \mathcal{O}(1) \) scrambling time and the apparent breakdown of spatial and temporal locality. The salient feature of GUE Hamiltonians which gives us computational traction is the Haar-invariance of the ensemble, meaning that the ensemble-averaged dynamics look the same in any basis. Motivated by this property of the GUE, we introduce \(k\)-invariance as a precise definition of what it means for the dynamics of a quantum system to be described by random matrix theory. We envision that the dynamical onset of approximate \(k\)-invariance will be a useful tool for capturing the transition from early-time chaos, as seen by OTOCs, to late-time chaos, as seen by random matrix theory.

MSC:

83C57 Black holes
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
62P35 Applications of statistics to physics

References:

[1] P. Hayden and J. Preskill, Black holes as mirrors: Quantum information in random subsystems, JHEP09 (2007) 120 [arXiv:0708.4025] [INSPIRE]. · doi:10.1088/1126-6708/2007/09/120
[2] Y. Sekino and L. Susskind, Fast Scramblers, JHEP10 (2008) 065 [arXiv:0808.2096] [INSPIRE]. · doi:10.1088/1126-6708/2008/10/065
[3] N. Lashkari, D. Stanford, M. Hastings, T. Osborne and P. Hayden, Towards the Fast Scrambling Conjecture, JHEP04 (2013) 022 [arXiv:1111.6580] [INSPIRE]. · Zbl 1342.81374 · doi:10.1007/JHEP04(2013)022
[4] S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP03 (2014) 067 [arXiv:1306.0622] [INSPIRE]. · Zbl 1333.83111 · doi:10.1007/JHEP03(2014)067
[5] S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP05 (2015) 132 [arXiv:1412.6087] [INSPIRE]. · Zbl 1388.83500 · doi:10.1007/JHEP05(2015)132
[6] J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP08 (2016) 106 [arXiv:1503.01409] [INSPIRE]. · Zbl 1390.81388 · doi:10.1007/JHEP08(2016)106
[7] A. Kitaev, Hidden correlations in the hawking radiation and thermal noise, talks given at The Fundamental Physics Prize Symposium, 10 November 2014, and at The KITP, 12 February 2015.
[8] S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett.70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
[9] A. Kitaev, A simple model of quantum holography, talks given at The KITP, 7 April 2015 and 27 May 2015.
[10] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev.D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
[11] J.S. Cotler et al., Black Holes and Random Matrices, JHEP05 (2017) 118 [arXiv:1611.04650] [INSPIRE]. · Zbl 1380.81307 · doi:10.1007/JHEP05(2017)118
[12] E.P. Wigner, Characteristic vectors of bordered matrices with infinite dimensions, Ann. Math.62 (1955) 548. · Zbl 0067.08403 · doi:10.2307/1970079
[13] F.J. Dyson, Statistical theory of the energy levels of complex systems. I, J. Math. Phys.3 (1962) 140 [INSPIRE]. · Zbl 0105.41604
[14] O. Bohigas, M.J. Giannoni and C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett.52 (1984) 1 [INSPIRE]. · Zbl 1119.81326 · doi:10.1103/PhysRevLett.52.1
[15] P. Hosur, X.-L. Qi, D.A. Roberts and B. Yoshida, Chaos in quantum channels, JHEP02 (2016) 004 [arXiv:1511.04021] [INSPIRE]. · Zbl 1388.81050 · doi:10.1007/JHEP02(2016)004
[16] D.A. Roberts and B. Yoshida, Chaos and complexity by design, JHEP04 (2017) 121 [arXiv:1610.04903] [INSPIRE]. · Zbl 1378.81123 · doi:10.1007/JHEP04(2017)121
[17] J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP04 (2003) 021 [hep-th/0106112] [INSPIRE]. · doi:10.1088/1126-6708/2003/04/021
[18] D.A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly effect, Phys. Rev. Lett.115 (2015) 131603 [arXiv:1412.5123] [INSPIRE]. · doi:10.1103/PhysRevLett.115.131603
[19] A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, On information loss in AdS3/CFT2, JHEP05 (2016) 109 [arXiv:1603.08925] [INSPIRE]. · Zbl 1388.83442 · doi:10.1007/JHEP05(2016)109
[20] A.L. Fitzpatrick and J. Kaplan, On the Late-Time Behavior of Virasoro Blocks and a Classification of Semiclassical Saddles, JHEP04 (2017) 072 [arXiv:1609.07153] [INSPIRE]. · Zbl 1378.81115 · doi:10.1007/JHEP04(2017)072
[21] E. Dyer and G. Gur-Ari, 2D CFT Partition Functions at Late Times, JHEP08 (2017) 075 [arXiv:1611.04592] [INSPIRE]. · Zbl 1381.83061 · doi:10.1007/JHEP08(2017)075
[22] V. Balasubramanian, B. Craps, B. Czech and G. Sárosi, Echoes of chaos from string theory black holes, JHEP03 (2017) 154 [arXiv:1612.04334] [INSPIRE]. · Zbl 1377.83036 · doi:10.1007/JHEP03(2017)154
[23] Y.-Z. You, A.W.W. Ludwig and C. Xu, Sachdev-Ye-Kitaev Model and Thermalization on the Boundary of Many-Body Localized Fermionic Symmetry Protected Topological States, Phys. Rev.B 95 (2017) 115150 [arXiv:1602.06964] [INSPIRE].
[24] A.M. García-García and J.J.M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 126010 [arXiv:1610.03816] [INSPIRE].
[25] M. Mehta, Random Matrices, Pure and Applied Mathematics, Elsevier Science (2004). · Zbl 1107.15019
[26] T. Tao, Topics in Random Matrix Theory, Graduate studies in mathematics, American Mathematical Society (2012). · Zbl 1256.15020
[27] T. Guhr, A. Müller-Groeling and H.A. Weidenmuller, Random matrix theories in quantum physics: Common concepts, Phys. Rept.299 (1998) 189 [cond-mat/9707301] [INSPIRE].
[28] A.R. Brown and L. Susskind, The Second Law of Quantum Complexity, arXiv:1701.01107 [INSPIRE].
[29] A. del Campo, J. Molina-Vilaplana and J. Sonner, Scrambling the spectral form factor: unitarity constraints and exact results, Phys. Rev.D 95 (2017) 126008 [arXiv:1702.04350] [INSPIRE].
[30] E. Brézin and S. Hikami, Spectral form factor in a random matrix theory, Phys. Rev.E 55 (1997) 4067 [cond-mat/9608116]. · Zbl 1132.15020
[31] L. Erdős and D. Schröder, Phase Transition in the Density of States of Quantum Spin Glasses, Math. Phys. Anal. Geom.17 (2014) 9164 [arXiv:1407.1552]. · Zbl 1310.82051 · doi:10.1007/s11040-014-9164-3
[32] J.S. Cotler, G.R. Penington and D.H. Ranard, Locality from the Spectrum, arXiv:1702.06142 [INSPIRE]. · Zbl 1416.81054
[33] A.I. Larkin and Y.N. Ovchinnikov, Quasiclassical Method in the Theory of Superconductivity, JETP28 (1969) 1200.
[34] D. Bagrets, A. Altland and A. Kamenev, Power-law out of time order correlation functions in the SYK model, Nucl. Phys.B 921 (2017) 727 [arXiv:1702.08902] [INSPIRE]. · Zbl 1370.82033 · doi:10.1016/j.nuclphysb.2017.06.012
[35] F.G.S.L. Brandão, P. Ćwiklinski, M. Horodecki, P. Horodecki, J.K. Korbicz and M. Mozrzymas, Convergence to equilibrium under a random hamiltonian, Phys. Rev.E 86 (2012) 031101 [arXiv:1108.2985].
[36] S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys.43 (1975) 199 [Erratum ibid.46 (1976) 206] [INSPIRE]. · Zbl 1378.83040
[37] W.G. Unruh, Notes on black hole evaporation, Phys. Rev.D 14 (1976) 870 [INSPIRE].
[38] D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett.71 (1993) 1291 [gr-qc/9305007] [INSPIRE]. · Zbl 0972.81504
[39] Z.-W. Liu, S. Lloyd, E.Y. Zhu and H. Zhu, Entropic scrambling complexities, arXiv:1703.08104 [INSPIRE].
[40] C. Dankert, R. Cleve, J. Emerson and E. Livine, Exact and approximate unitary 2-designs and their application to fidelity estimation, Phys. Rev.A 80 (2009) 012304 [quant-ph/0606161].
[41] F.G.S.L. Brandão, A.W. Harrow and M. Horodecki, Local Random Quantum Circuits are Approximate Polynomial-Designs, Commun. Math. Phys.346 (2016) 397 [arXiv:1208.0692]. · Zbl 1367.81035 · doi:10.1007/s00220-016-2706-8
[42] F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence, JHEP06 (2015) 149 [arXiv:1503.06237] [INSPIRE]. · Zbl 1388.81094 · doi:10.1007/JHEP06(2015)149
[43] P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter and Z. Yang, Holographic duality from random tensor networks, JHEP11 (2016) 009 [arXiv:1601.01694] [INSPIRE]. · Zbl 1390.83344 · doi:10.1007/JHEP11(2016)009
[44] A.J. Scott, Optimizing quantum process tomography with unitary 2-designs, J. Phys.A 41 (2008) 055308 [arXiv:0711.1017]. · Zbl 1141.81009
[45] B. Collins, Moments and cumulants of polynomial random variables on unitarygroups, the itzykson-zuber integral, and free probability, Int. Math. Res. Not.2003 (2003) 953 [math-ph/0205010]. · Zbl 1049.60091
[46] B. Collins and P. Śniady, Integration with Respect to the Haar Measure on Unitary, Orthogonal and Symplectic Group, Commun. Math. Phys.264 (2006) 773 [math-ph/0402073]. · Zbl 1108.60004
[47] D. Weingarten, Asymptotic Behavior of Group Integrals in the Limit of Infinite Rank, J. Math. Phys.19 (1978) 999 [INSPIRE]. · Zbl 0388.28013
[48] P. Diaconis and M. Shahshahani, On the eigenvalues of random matrices, J. Appl. Prob.31 (1994) 49. · Zbl 0807.15015 · doi:10.2307/3214948
[49] S. Bravyi, M.B. Hastings and F. Verstraete, Lieb-Robinson Bounds and the Generation of Correlations and Topological Quantum Order, Phys. Rev. Lett.97 (2006) 050401 [quant-ph/0603121].
[50] L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys.64 (2016) 44 [arXiv:1403.5695] [INSPIRE]. · Zbl 1429.81020 · doi:10.1002/prop.201500093
[51] A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and black holes, Phys. Rev.D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].
[52] X. Chen, Z.C. Gu and X.G. Wen, Local unitary transformation, long-range quantum entanglement, wave function renormalization and topological order, Phys. Rev.B 82 (2010) 155138 [arXiv:1004.3835] [INSPIRE]. · doi:10.1103/PhysRevB.82.155138
[53] D. Harlow and P. Hayden, Quantum Computation vs. Firewalls, JHEP06 (2013) 085 [arXiv:1301.4504] [INSPIRE]. · Zbl 1342.83169
[54] Z.-C. Yang, A. Hamma, S.M. Giampaolo, E.R. Mucciolo and C. Chamon, Entanglement complexity in quantum many-body dynamics, thermalization, and localization, Phys. Rev.B 96 (2017) 020408 [arXiv:1703.03420].
[55] E. Brézin and S. Hikami, Random Matrix Theory with an External Source, Springer Briefs in Mathematical Physics, Springer Singapore (2017). · Zbl 1455.60002
[56] Y. Huang, F.G. S.L. Brandao and Y.-L. Zhang, Finite-size scaling of out-of-time-ordered correlators at late times, arXiv:1705.07597 [INSPIRE].
[57] M.V. Berry, Regular and irregular semiclassical wavefunctions, J. Phys.A 10 (1977) 2083. · Zbl 0377.70014
[58] M. Srednicki, Chaos and quantum thermalization, Phys. Rev.E 50 (1994) 888 [cond-mat/9403051].
[59] L. D’Alessio, Y. Kafri, A. Polkovnikov and M. Rigol, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Adv. Phys.65 (2016) 239 [arXiv:1509.06411] [INSPIRE]. · doi:10.1080/00018732.2016.1198134
[60] W.W. Ho and D. Radicevic, The Ergodicity Landscape of Quantum Theories, arXiv:1701.08777 [INSPIRE]. · Zbl 1382.81103
[61] J. Sonner and M. Vielma, Eigenstate thermalization in the Sachdev-Ye-Kitaev model, arXiv:1707.08013 [INSPIRE]. · Zbl 1383.81258
[62] J.M. Magan, Random free fermions: An analytical example of eigenstate thermalization, Phys. Rev. Lett.116 (2016) 030401 [arXiv:1508.05339] [INSPIRE]. · Zbl 1356.82006
[63] H. Gharibyan, M. Hanada, S. Shenker and M. Tezuka, to appear.
[64] D.N. Page, Information in black hole radiation, Phys. Rev. Lett.71 (1993) 3743 [hep-th/9306083] [INSPIRE]. · Zbl 0972.83567 · doi:10.1103/PhysRevLett.71.3743
[65] W. Brown and O. Fawzi, Decoupling with random quantum circuits, Commun. Math. Phys.340 (2015) 867 [arXiv:1307.0632]. · Zbl 1328.81078 · doi:10.1007/s00220-015-2470-1
[66] R.A. Low, Pseudo-randomness and Learning in Quantum Computation, Ph.D. Thesis (2010) [arXiv:1006.5227].
[67] E. Brézin and S. Hikami, Extension of level-spacing universality, Phys. Rev.E 56 (1997) 264 [cond-mat/9702213].
[68] R.E. Prange, The spectral form factor is not self-averaging, Phys. Rev. Lett.78 (1997) 2280 [chao-dyn/9606010].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.