×

Müntz pseudo-spectral method: theory and numerical experiments. (English) Zbl 1453.65358

Summary: This paper presents two new non-classical Lagrange basis functions which are based on the new Jacobi-Müntz functions presented by the authors recently. These basis functions are, in fact, generalized forms of the newly generated Jacobi-based functions. With respect to these non-classical Lagrange basis functions, two non-classical interpolants are introduced and their error bounds are proved in detail. The pseudo-spectral differentiation (and integration) matrices have been extracted in two different manners. Some numerical experiments are provided to show the efficiency and capability of these newly generated non-classical Lagrange basis functions.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
26A33 Fractional derivatives and integrals
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
58C40 Spectral theory; eigenvalue problems on manifolds
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
34A08 Fractional ordinary differential equations

Software:

Matlab

References:

[1] Atanacković, T. M.; Pilipović, S.; Stanković, B.; Zorica, D., Fractional calculus with applications in mechanics, Mechanical engineering and solid mechanics series (2014), ISTE, London; John Wiley & Sons, Inc., Hoboken, NJ · Zbl 1291.74001
[2] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J., Fractional calculus, Series on complexity, nonlinearity and Chaos, 3 (2012), World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ · Zbl 1248.26011
[3] Boyd, J. P., Chebyshev and fourier spectral methods (2001), Dover Publications, Inc., Mineola, NY · Zbl 0994.65128
[4] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral methods, Scientific computation (2007), Springer, Berlin · Zbl 1121.76001
[5] Chihara, T. S., An introduction to orthogonal polynomials (1978), Gordon and Breach Science Publishers: Gordon and Breach Science Publishers New York-London-Paris · Zbl 0389.33008
[6] Dehghan, M.; Abbaszadeh, M., An efficient technique based on finite difference/finite element method for solution of two-dimensional space/multi-time fractional Bloch-Torrey equations, Appl Numer Math, 131, 190-206 (2018) · Zbl 1395.65074
[7] Dehghan, M.; Abbaszadeh, M., A legendre spectral element method (SEM) based on the modified bases for solving neutral delay distributed-order fractional damped diffusion-wave equation, Math Methods Appl Sci, 41, 3476-3494 (2018) · Zbl 1395.65098
[8] Dehghan, M.; Abbaszadeh, M., Error estimate of finite element/finite difference technique for solution of two-dimensional weakly singular integro-partial differential equation with space and time fractional derivatives, J Comput Appl Math, 356, 314-328 (2019) · Zbl 1419.65015
[9] Dehghan, M.; Manafian, J.; Saadatmandi, A., Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer Methods Partial Differ Eqs, 26, 448-479 (2010) · Zbl 1185.65187
[10] Dehghan, M.; Safarpoor, M., Application of the dual reciprocity boundary integral equation approach to solve fourth-order time fractional partial differential equations, Int J Comput Math, 95, 2066-2081 (2018) · Zbl 1499.65709
[11] Diethelm, K., The analysis of fractional differential equations, Lecture notes in mathematics, vol. 2004 (2010), Springer-Verlag, Berlin · Zbl 1215.34001
[12] Ejlali, N.; Hosseini, S. M., A pseudospectral method for fractional optimal control problems, J Optim Theory Appl, 174, 1, 83-107 (2017) · Zbl 1377.49019
[13] Esmaeili, S.; Shamsi, M., A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations, Commun Nonlinear Sci NumerSimul, 16, 9, 3646-3654 (2011) · Zbl 1226.65062
[14] Esmaeili, S.; Shamsi, M.; Luchko, Y., Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials, Comput Math Appl Int J, 62, 3, 918-929 (2011) · Zbl 1228.65132
[15] Fakhar-Izadi, F.; Dehghan, M., Fully spectral collocation method for nonlinear parabolic partial integro-differential equations, Appl Numer Math, 123, 99-120 (2018) · Zbl 1377.65169
[16] Hesthaven, J. S.; Gottlieb, S.; Gottlieb, D., Spectral methods for time-dependent problems, Cambridge monographs on applied and computational mathematics, vol. 21 (2007), Cambridge University Press, Cambridge · Zbl 1111.65093
[17] Hilfer, R., Applications of fractional calculus in physics (2000), World Scientific Publishing Co., Inc.: World Scientific Publishing Co., Inc. River Edge, NJ · Zbl 0998.26002
[18] Hou, D.; Lin, Y.; Azaiez, M.; Xu, C., A Müntz-collocation spectral method for weakly singular Volterra integral equations, 81, 2162-2187 (2019) · Zbl 1443.65440
[19] Huang, C.; Jiao, Y.; Wang, L.-L.; Zhang, Z., Optimal fractional integration preconditioning and error analysis of fractional collocation method using nodal generalized Jacobi functions, SIAM J Numer Anal, 54, 6, 3357-3387 (2016) · Zbl 1353.65086
[20] Kharazmi, E.; Zayernouri, M.; Karniadakis, G. E., A Petrov-Galerkin spectral element method for fractional elliptic problems, Comput Methods Appl Mech Eng, 324, 512-536 (2017) · Zbl 1439.65205
[21] Khosravian-Arab, H.; Dehghan, M.; Eslahchi, M., Fractional Sturm-Liouville boundary value problems in unbounded domains: theory and applications, J Comput Phys, 299, 526-560 (2015) · Zbl 1352.65202
[22] Khosravian-Arab, H.; Dehghan, M.; Eslahchi, M., Fractional spectral and pseudo-spectral methods in unbounded domains: theory and applications, J Comput Phys, 338, 527-566 (2017) · Zbl 1415.65177
[23] Khosravian-Arab H., Eslahchi M.R.. Müntz Sturm-Liouville problems: theory and numerical experiments. arXiv:1908.00062 [math.NA] (2019).
[24] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and applications of fractional differential equations, North-Holland mathematics studies, vol. 204 (2006), Elsevier Science B.V., Amsterdam · Zbl 1092.45003
[25] Li, C.; Zeng, F., Numerical methods for fractional calculus, Chapman & Hall/CRC numerical analysis and scientific computing (2015), CRC Press: CRC Press Boca Raton, FL · Zbl 1326.65033
[26] Mainardi, F., Fractional calculus and waves in linear viscoelasticity (2010), Imperial College Press: Imperial College Press London · Zbl 1210.26004
[27] Mao, Z.; Karniadakis, G. E., A spectral method (of exponential convergence) for singular solutions of the diffusion equation with general two-sided fractional derivative, SIAM J Numer Anal, 56, 1, 24-49 (2018) · Zbl 1422.65428
[28] Meerschaert, M. M.; Sikorskii, A., Stochastic models for fractional calculus, De Gruyter studies in mathematics, vol. 43 (2012), Walter de Gruyter & Co. · Zbl 1247.60003
[29] Miller, K. S.; Ross, B., An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience Publication (1993), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York · Zbl 0789.26002
[30] Ortigueira, M. D., Fractional calculus for scientists and engineers, Lecture notes in electrical engineering, vol. 84 (2011), Springer: Springer Dordrecht · Zbl 1251.26005
[31] Podlubny, I., Fractional differential equations, Mathematics in science and engineering, vol. 198 (1999), Academic Press, Inc.: Academic Press, Inc. San Diego, CA · Zbl 0918.34010
[32] Saha Ray, S., Fractional calculus with applications for nuclear reactor dynamics (2016), CRC Press: CRC Press Boca Raton, FL · Zbl 1317.00002
[33] Shen, J.; Tang, T.; Wang, L.-L., Spectral methods, Springer series in computational mathematics, vol. 41 (2011), Springer, Heidelberg · Zbl 1227.65117
[34] Suzuki, J. L.; Zayernouri, M.; Bittencourt, M. L.; Karniadakis, G. E., Fractional-order uniaxial visco-elasto-plastic models for structural analysis, Comput. Methods Appl. Mech. Eng., 308, 443-467 (2016) · Zbl 1439.74077
[35] Trefethen, L. N., Spectral methods in MATLAB, Software, environments, and tools, vol. 10 (2000), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA · Zbl 0953.68643
[36] Weideman, J. A.C.; Trefethen, L. N., The eigenvalues of second-order spectral differentiation matrices, SIAM J Numer Anal, 25, 6, 1279-1298 (1988) · Zbl 0666.65063
[37] Zayernouri, M.; Ainsworth, M.; Karniadakis, G. E., A unified Petrov-Galerkin spectral method for fractional PDEs, Comput Methods Appl Mech Eng, 283, 1545-1569 (2015) · Zbl 1425.65127
[38] Zayernouri, M.; Karniadakis, G. E., Fractional spectral collocation method, SIAM J Sci Comput, 36, 1, A40-A62 (2014) · Zbl 1294.65097
[39] Zayernouri, M.; Karniadakis, G. E., Fractional spectral collocation methods for linear and nonlinear variable order FPDEs, J Comput Phys, 293, 312-338 (2015) · Zbl 1349.65531
[40] Zayernouri, M.; Park, S.-W.; Tartakovsky, D. M.; Karniadakis, G. E., Stochastic smoothed profile method for modeling random roughness in flow problems, Comput Methods Appl Mech Eng, 263, 99-112 (2013) · Zbl 1286.76038
[41] Zeng, F.; Mao, Z.; Karniadakis, G. E., A generalized spectral collocation method with tunable accuracy for fractional differential equations with end-point singularities, SIAM J Sci Comput, 39, 1, A360-A383 (2017) · Zbl 1431.65193
[42] Zhang, Y.; Sun, H.; Stowell, H. H.; Zayernouri, M.; Hansen, S. E., A review of applications of fractional calculus in earth system dynamics, Chaos Solitons Fractals, 102, 29-46 (2017) · Zbl 1374.86028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.