×

Application of the dual reciprocity boundary integral equation approach to solve fourth-order time-fractional partial differential equations. (English) Zbl 1499.65709

Summary: This paper proposes a numerical approach to approximate the unknown solution of some high-order fractional partial differential equations. The main idea of this approach is to transform the original problem into an equivalent integral equation that depends only on the boundary values. The linear radial basis functions are used as the main tool for approximating the non-homogeneous terms and time derivative. Also the Caputo’s sense is applied to approximate time derivatives. Numerical results demonstrate the order of time steps is \(O(\tau^{2-\alpha})\) and \(O(\tau^{3-\alpha})\) when \(0 < \alpha < 1\) and \(1 < \alpha < 2\), respectively. Finally to overcome the nonlinear terms, predictor-corrector scheme is employed. The efficiency and usefulness of proposed method are demonstrated by some numerical examples.

MSC:

65N38 Boundary element methods for boundary value problems involving PDEs
35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals
65D12 Numerical radial basis function approximation
65R20 Numerical methods for integral equations
65N80 Fundamental solutions, Green’s function methods, etc. for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Abbaszadeh, M.; Mohebbi, A., A fourth-order compact solution of the two-dimensional modified anomalous fractional sub-diffusion equation with a nonlinear source term, Comput. Math. Appl., 66, 1345-1359 (2013) · Zbl 1350.65083 · doi:10.1016/j.camwa.2013.08.010
[2] Agrawal, O. P., A general solution for a fourth-order fractional diffusion-wave equation defined in a bounded domain, Comput. Struct., 79, 1497-1501 (2001) · doi:10.1016/S0045-7949(01)00026-8
[3] Ang, W. T., A Beginner’s Course in Boundary Element Methods (2007), Universal Publishers: Universal Publishers, Boca Raton, FL
[4] Ang, W. T.; Ang, K. C., A dual reciprocity boundary element solution of a generalized nonlinear Schrödinger equation, Numer. Methods Partial Differential Equations, 20, 843-854 (2004) · Zbl 1062.65109 · doi:10.1002/num.20011
[5] Brebbia, C. A.; Nardini, D., Dynamic analysis in solid mechanics by an alternative boundary element procedure, Int. J. Soil. Dyn. Earthquake. Eng., 2, 228-233 (1983) · doi:10.1016/0261-7277(83)90040-2
[6] Brebbia, C. A.; Walker, S., The Boundeary Element Techniques in Engineering (1980), Newnes-Butterworths: Newnes-Butterworths, London · Zbl 0444.73065
[7] Dehghan, M.; Ghesmati, A., Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method, Eng. Anal. Bound. Elem., 34, 51-59 (2010) · Zbl 1244.65137 · doi:10.1016/j.enganabound.2009.07.002
[8] Dehghan, M.; Mirzaei, D., The boundary integral approach for numerical solution of the one-dimensional Sine-Gordon equation, Numer. Methods Partial Differential Equations, 24, 1405-1415 (2008) · Zbl 1153.65099 · doi:10.1002/num.20325
[9] Dehghan, M.; Safarpoor, M., The dual reciprocity boundary elements method for the linear and nonlinear two-dimensional time-fractional partial differential equations, Math. Methods Appl. Sci., 39, 3979-3995 (2016) · Zbl 1347.65182 · doi:10.1002/mma.3839
[10] Dehghan, M.; Safarpoor, M., The dual reciprocity boundary integral equation technique to solve a class of the linear and nonlinear fractional partial differential equations, Math. Methods Appl. Sci., 39, 2461-2476 (2016) · Zbl 1342.65224 · doi:10.1002/mma.3707
[11] Dehghan, M.; Shirzadi, M., The modified dual reciprocity boundary elements method and its application for solving stochastic partial differential equations, Eng. Anal. Bound. Elem., 58, 99-111 (2015) · Zbl 1403.65192 · doi:10.1016/j.enganabound.2015.03.013
[12] Dehghan, M.; Shirzadi, M., A meshless method based on the dual reciprocity method for one-dimensional stochastic partial differential equations, Numer. Methods Partial Differential Equations, 32, 292-306 (2016) · Zbl 1337.65010 · doi:10.1002/num.21995
[13] Dehghan, M.; Manafian, J.; Saadatmandi, A., Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. Methods Partial Differential Equations, 26, 448-479 (2010) · Zbl 1185.65187
[14] Dehghan, M.; Safarpoor, M.; Abbaszadeh, M., Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations, J. Comput. Appl. Math., 290, 174-195 (2015) · Zbl 1321.65129 · doi:10.1016/j.cam.2015.04.037
[15] Diethelm, K.; Ford, N. J., Analysis of fractional differential equations, J. Math. Anal. Appl., 265, 229-248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2000.7194
[16] El-Ajou, A.; Arqub, O. A.; Momani, S.; Baleanu, D.; Alsaedi, A., A novel expansion iterative method for solving linear partial differential equations of fractional order, Appl. Math. Comput., 257, 119-133 (2015) · Zbl 1339.65201
[17] Golbabai, A.; Sayevand, K., Fractional calculus – a new approach to the analysis of generalized fourth-order diffusion-wave equations, Comput. Math. Appl., 61, 2227-2231 (2011) · Zbl 1219.65117 · doi:10.1016/j.camwa.2010.09.022
[18] Hu, X.; Zhang, L., A compact finite difference scheme for the fourth-order fractional diffusion-wave system, Comput. Phys. Comm., 182, 1645-1650 (2011) · Zbl 1262.65102 · doi:10.1016/j.cpc.2011.04.013
[19] Hu, X.; Zhang, L., On finite difference methods for fourth-order fractional diffusion-wave and subdiffusion systems, Appl. Math. Comput., 218, 5019-5034 (2012) · Zbl 1262.65101
[20] Katsikadelis, J. T., Boundary Elements Methods, Theory and Application (2002), Elsevier: Elsevier, Athens · Zbl 1051.74052
[21] Katsikadelis, J.T., The fractional diffusion-wave equation in bounded inhomogeneous anisotropic media. An AEM solution, Recent Advances in BEM, Dordrecht, Netherlands, 2009, pp. 255-276. · Zbl 1161.74509
[22] Katsikadelis, J. T., The BEM for numerical solution of partial fractional differential equations, Comput. Math. Appl., 62, 891-901 (2011) · Zbl 1228.74103 · doi:10.1016/j.camwa.2011.04.001
[23] Khan, N. A.; Khan, N. U.; Ayaz, M.; Mahmood, A., Analytical methods for solving the time-fractional Swift-Hohenberg (S-H) equation, Comput. Math. Appl., 61, 2182-2185 (2011) · Zbl 1219.65144 · doi:10.1016/j.camwa.2010.09.009
[24] Li, C. P.; Zeng, F., Numerical Methods for Fractional Calculus (2015), Chapman and Hall/CRC: Chapman and Hall/CRC, New York · Zbl 1326.65033
[25] Liu, F.; Shen, S.; Anh, V.; Turner, I., Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation, ANZIAM J., 46, 488-504 (2005) · Zbl 1082.60511 · doi:10.21914/anziamj.v46i0.973
[26] Liu, F.; Zhuang, P.; Anh, V.; Turner, I.; Burrage, K., Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, J. Appl. Math. Comput., 191, 12-20 (2007) · Zbl 1193.76093 · doi:10.1016/j.amc.2006.08.162
[27] Liu, F.; Zhuang, P.; Burrage, K., Numerical methods and analysis for a class of fractional advection-dispersion models, Comput. Math. Appl., 64, 2990-3007 (2012) · Zbl 1268.65124 · doi:10.1016/j.camwa.2012.01.020
[28] Liu, Y.; Fang, Z.; Li, H.; He, S., A mixed finite element method for a time-fractional fourth-order partial differential equation, Appl. Math. Comput., 243, 703-717 (2014) · Zbl 1336.65166
[29] Lombard, B.; Mercier, J.-F., Numerical modeling of nonlinear acoustic waves in a tube connected with Helmholtz resonators, J. Comput. Phys., 259, 421-443 (2014) · Zbl 1349.74362 · doi:10.1016/j.jcp.2013.11.036
[30] Miller, K. S.; Ross, B., An Introduction the Fractional Calculus and Fractional Differential Equations (1974), Academic Press: Academic Press, New York and London
[31] Mohebbi, A.; Abbaszadeh, M., Compact finite difference scheme for solution of time fractional advection-dispersion equation, Numer. Algorithms, 63, 431-452 (2013) · Zbl 1380.65170 · doi:10.1007/s11075-012-9631-5
[32] Momani, S.; Yildirim, A., Analytical approximate solutions of the fractional convection-diffusion equation with nonlinear source term by He’s homotopy perturbation method, Int. J. Comput. Methods, 87, 1057-1065 (2010) · Zbl 1192.65137 · doi:10.1080/00207160903023581
[33] Oldham, K. B.; Spanier, J., The Fractional Calculus (1974), Academic Press: Academic Press, New York and London · Zbl 0428.26004
[34] Peletier, L. A.; Rottschäfer, V., Pattern selection of solutions of the Swift-Hohenberg equation, Phys. D, 194, 95-126 (2004) · Zbl 1052.35076 · doi:10.1016/j.physd.2004.01.043
[35] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press, San Diego · Zbl 0918.34010
[36] Ramachandran, P. A., Boundary Element Methods in Transport Phenomena (Computational Engineering) (1994), Computational Mechanics Publications: Computational Mechanics Publications, Southampton
[37] Ren, J.; Sun, Z.-Z.; Zhao, X., Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions, J. Comput. Phys., 232, 456-467 (2013) · Zbl 1291.35428 · doi:10.1016/j.jcp.2012.08.026
[38] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1993), Gordon and Breach: Gordon and Breach, Amsterdam · Zbl 0818.26003
[39] Shirzadi, A.; Ling, L.; Abbasbandy, S., Meshless simulations of the two-dimensional fractional-time convection-diffusion-reaction equations, Eng. Anal. Bound. Elem., 36, 1522-1527 (2012) · Zbl 1352.65263 · doi:10.1016/j.enganabound.2012.05.005
[40] Sparavigna, A.C. and Milligan, P., Using fractional differentiation in astronomy, preprint (2009). Available at arXiv:0910.4243.
[41] Srivastava, V.; Rai, K. N., A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues, Math. Comput. Model., 51, 616-624 (2010) · Zbl 1190.35226 · doi:10.1016/j.mcm.2009.11.002
[42] Sun, Z.-Z.; Wu, X., A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56, 193-209 (2006) · Zbl 1094.65083 · doi:10.1016/j.apnum.2005.03.003
[43] Tadjeran, C.; Meerschaert, M. M.; Scheffler, H.-P., A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys., 213, 205-213 (2006) · Zbl 1089.65089 · doi:10.1016/j.jcp.2005.08.008
[44] Tezer-Sezgin, M.; Aydin, S. H., Solution of magnetohydrodynamic flow problems using the boundary element method, Eng. Anal. Bound. Elem., 30, 411-418 (2006) · Zbl 1187.76703 · doi:10.1016/j.enganabound.2005.12.001
[45] Tezer-Sezgin, M.; Bozkaya, C., The boundary element solution of the magnetohydrodynamic flow in an infinite region, J. Comput. Appl. Math., 225, 510-521 (2009) · Zbl 1301.76054 · doi:10.1016/j.cam.2008.08.016
[46] Vishal, K.; Kumar, S.; Das, S., Application of homotopy analysis method for fractional Swift-Hohenberg equation-Revisited, Appl. Math. Model., 36, 3630-3637 (2012) · Zbl 1252.65179 · doi:10.1016/j.apm.2011.10.001
[47] Vong, S.; Wang, Z., A high-order compact scheme for the nonlinear fractional Klein-Gordon equation, Numer. Methods Partial Differential Equations, 31, 706-722 (2015) · Zbl 1320.65122 · doi:10.1002/num.21912
[48] Wei, L.; He, Y., Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems, Appl. Math. Model., 38, 1511-1522 (2014) · Zbl 1427.65267 · doi:10.1016/j.apm.2013.07.040
[49] Yuste, S. B.; Acedo, L., An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 42, 5, 1862-1874 (2005) · Zbl 1119.65379 · doi:10.1137/030602666
[50] Zhuang, P.; Liu, F.; Anh, V.; Turner, I., New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation, SIAM J. Numer. Anal., 46, 1079-1095 (2008) · Zbl 1173.26006 · doi:10.1137/060673114
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.