×

A Petrov-Galerkin spectral element method for fractional elliptic problems. (English) Zbl 1439.65205

Summary: We develop a new \(C^0\)-continuous Petrov-Galerkin spectral element method for one-dimensional fractional elliptic problems of the form \(_0 \mathcal{D}_x^\alpha u(x) - \lambda u(x) = f(x)\), \(\alpha \in(1, 2]\), subject to homogeneous boundary conditions. We employ the standard (modal) spectral element basis and the Jacobi poly-fractonomials as the test functions [the last two authors, J. Comput. Phys. 252, 495–517 (2013; Zbl 1349.34095)]. We formulate a new procedure for assembling the global linear system from elemental (local) mass and stiffness matrices. The Petrov-Galerkin formulation requires performing elemental (local) construction of mass and stiffness matrices in the standard domain only once. Moreover, we efficiently obtain the non-local (history) stiffness matrices, in which the non-locality is presented analytically for uniform grids. We also investigate two distinct choices of basis/test functions: (i) local basis/test functions, and (ii) local basis with global test functions. We show that the former choice leads to a better-conditioned system and accuracy, while the latter results in ill-conditioned linear systems, and therefore, that is not an efficient and a proper choice of test function. We consider smooth and singular solutions, where the singularity can occur at boundary points as well as in the interior domain. We also construct two non-uniform grids over the whole computational domain in order to capture singular solutions. Finally, we perform a systematic numerical study of non-local effects via full and partial history fading in order to further enhance the efficiency of the scheme.

MSC:

65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35R11 Fractional partial differential equations

Citations:

Zbl 1349.34095

References:

[1] Jha, R.; Kaw, P. K.; Kulkarni, D. R.; Parikh, J. C.; Team, A., Evidence of Lévy stable process in tokamak edge turbulence, Phys. Plasmas, 10, 3, 699-704 (2003), (1994-Present)
[2] del Castillo-Negrete, D.; Carreras, B. A.; Lynch, V. E., Fractional diffusion in plasma turbulence, Phys. Plasmas, 11, 8, 3854-3864 (2004), (1994-Present)
[3] Jaishankar, A.; McKinley, G. H., Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations, Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci., 469, 2149, 20120284 (2013) · Zbl 1371.74066
[4] Baeumer, B.; Benson, D. A.; Meerschaert, M.; Wheatcraft, S. W., Subordinated advection-dispersion equation for contaminant transport, Water Resour. Res., 37, 6, 1543-1550 (2001)
[5] Meral, F. C.; Royston, T. J.; Magin, R., Fractional calculus in viscoelasticity: an experimental study, Commun. Nonlinear Sci. Numer. Simul., 15, 4, 939-945 (2010) · Zbl 1221.74012
[6] Jaishankar, A.; McKinley, G. H., A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids, J. Rheology, 58, 6, 1751-1788 (2014), (1978-Present)
[7] Naghibolhosseini, M., Estimation of Outer-Middle Ear Transmission Using DPOAEs and Fractional-Order Modeling of Human Middle Ear (Ph.D. thesis) (2015), City University of New York, NY.
[8] Suzuki, J. L.; Zayernouri, M.; Bittencourt, M. L.; Karniadakis, G. E., Fractional-order uniaxial visco-elasto-plastic models for structural analysis, Comput. Methods Appl. Mech. Engrg., 308, 443-467 (2016) · Zbl 1439.74077
[9] Lubich, C., On the stability of linear multistep methods for Volterra convolution equations, IMA J. Numer. Anal., 3, 4, 439-465 (1983) · Zbl 0543.65095
[10] Lubich, C., Discretized fractional calculus, SIAM J. Math. Anal., 17, 3, 704-719 (1986) · Zbl 0624.65015
[11] Sanz-Serna, J., A numerical method for a partial integro-differential equation, SIAM J. Numer. Anal., 25, 2, 319-327 (1988) · Zbl 0643.65098
[12] Sugimoto, N., Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves, J. Fluid Mech., 225, 631-653, 4 (1991) · Zbl 0721.76011
[13] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1, 1-77 (2000) · Zbl 0984.82032
[14] Gorenflo, R.; Mainardi, F.; Moretti, D.; Paradisi, P., Time fractional diffusion: a discrete random walk approach, Nonlinear Dynam., 29, 1-4, 129-143 (2002) · Zbl 1009.82016
[15] Diethelm, K.; Ford, N. J.; Freed, A. D., Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36, 1, 31-52 (2004) · Zbl 1055.65098
[16] Langlands, T.; Henry, B., The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205, 2, 719-736 (2005) · Zbl 1072.65123
[17] Sun, Z.; Wu, X., A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56, 2, 193-209 (2006) · Zbl 1094.65083
[18] Lin, Y.; Xu, C., Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225, 2, 1533-1552 (2007) · Zbl 1126.65121
[19] Wang, H.; Wang, K.; Sircar, T., A direct \(O(N l o g^2 N)\) finite difference method for fractional diffusion equations, J. Comput. Phys., 229, 21, 8095-8104 (2010) · Zbl 1198.65176
[20] Wang, K.; Wang, H., A fast characteristic finite difference method for fractional advection-diffusion equations, Adv. Water Resour., 34, 7, 810-816 (2011)
[21] Huang, J.; Tang, Y.; Vazquez, L., Convergence analysis of a block-by-block method for fractional differential equations, Numer. Math. Theory Methods Appl., 5, 2, 229-241 (2012) · Zbl 1265.65141
[22] Cao, J.; Xu, C., A high order schema for the numerical solution of the fractional ordinary differential equations, J. Comput. Phys., 238, 1, 154-168 (2013) · Zbl 1286.65092
[23] Zeng, F.; Li, C.; Liu, F.; Turner, I., Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy, SIAM J. Sci. Comput., 37, 1, A55-A78 (2015) · Zbl 1334.65162
[24] Zayernouri, M.; Matzavinos, A., Fractional Adams-Bashforth/Moulton methods: An application to the fractional Keller-Segel chemotaxis system, J. Comput. Phys., 317, 1-14 (2016) · Zbl 1349.65234
[25] Fix, G.; Roof, J., Least squares finite-element solution of a fractional order two-point boundary value problem, Comput. Math. Appl., 48, 7, 1017-1033 (2004) · Zbl 1069.65094
[26] Roop, J. P., Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in \(R^2\), J. Comput. Appl. Math., 193, 1, 243-268 (2006) · Zbl 1092.65122
[27] Ervin, V. J.; Roop, J. P., Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differential Equations, 22, 3, 558-576 (2006) · Zbl 1095.65118
[28] Jin, B.; Lazarov, R.; Pasciak, J.; Zhou, Z., Error analysis of a finite element method for the space-fractional parabolic equation, SIAM J. Numer. Anal., 52, 5, 2272-2294 (2014) · Zbl 1310.65126
[29] Jin, B.; Lazarov, R.; Pasciak, J.; Rundell, W., Variational formulation of problems involving fractional order differential operators, Math. Comp., 84, 296, 2665-2700 (2015) · Zbl 1321.65127
[30] Wang, H.; Yang, D., Wellposedness of variable-coefficient conservative fractional elliptic differential equations, SIAM J. Numer. Anal., 51, 2, 1088-1107 (2013) · Zbl 1277.65059
[31] Wang, H.; Zhang, X., A high-accuracy preserving spectral Galerkin method for the Dirichlet boundary-value problem of variable-coefficient conservative fractional diffusion equations, J. Comput. Phys., 281, 67-81 (2015) · Zbl 1352.65211
[32] Wang, H.; Yang, D.; Zhu, S., A Petrov-Galerkin finite element method for variable-coefficient fractional diffusion equations, Comput. Methods Appl. Mech. Engrg., 290, 45-56 (2015) · Zbl 1425.65183
[33] Wang, H.; Yang, D.; Zhu, S., Inhomogeneous dirichlet boundary-value problems of space-fractional diffusion equations and their finite element approximations, SIAM J. Numer. Anal., 52, 3, 1292-1310 (2014) · Zbl 1320.65182
[34] Hanert, E., A comparison of three Eulerian numerical methods for fractional-order transport models, Environ. Fluid Mech., 10, 1-2, 7-20 (2010)
[35] Carella, A. R., Spectral Finite Element Methods for solving Fractional Differential Equations with Applications in Anomalous Transport (Ph.D. thesis) (2012), Norwegian University of Science and Technology
[36] Deng, W.; Hesthaven, J. S., Local discontinuous Galerkin methods for fractional diffusion equations, ESAIM Math. Model. Numer. Anal., 47, 6, 1845-1864 (2013) · Zbl 1282.35400
[37] Xu, Q.; Hesthaven, J., Discontinuous Galerkin method for fractional convection-diffusion equations, SIAM J. Numer. Anal., 52, 1, 405-423 (2014) · Zbl 1297.26018
[38] Zayernouri, M.; Karniadakis, G. E., Fractional Sturm-Liouville eigen-problems: theory and numerical approximations, J. Comput. Phys., 473, 2108-2131 (2013)
[39] Zayernouri, M.; Ainsworth, M.; Karniadakis, G. E., Tempered fractional Sturm-Liouville eigenproblems, SIAM J. Sci. Comput., 37, 4, A1777-A1800 (2015) · Zbl 1323.34012
[40] Zayernouri, M.; Karniadakis, G. E., Discontinuous spectral element methods for time- and space-fractional advection equations, SIAM J. Sci. Comput., 36, 4, B684-B707 (2014) · Zbl 1304.35757
[41] Zayernouri, M.; Ainsworth, M.; Karniadakis, G. E., A unified Petrov-Galerkin spectral method for fractional PDEs, Comput. Methods Appl. Mech. Engrg., 283, 1545-1569 (2015) · Zbl 1425.65127
[42] Zayernouri, M.; Karniadakis, G. E., Fractional spectral collocation methods for linear and nonlinear variable order FPDEs, J. Comput. Phys., 293, 312-338 (2015) · Zbl 1349.65531
[43] Zayernouri, M.; Karniadakis, G. E., Exponentially accurate spectral and spectral element methods for fractional ODEs, J. Comput. Phys., 257, 460-480 (2014) · Zbl 1349.65257
[44] Dehghan, M.; Abbaszadeh, M.; Mohebbi, A., Legendre spectral element method for solving time fractional modified anomalous sub-diffusion equation, Appl. Math. Model., 40, 5, 3635-3654 (2016) · Zbl 1459.65194
[45] Su, Y., A parallel spectral element method for fractional Lorenz system, Discrete Dyn. Nat. Soc. (2015) · Zbl 1418.65092
[46] Karniadakis, G. E.; Sherwin, S. J., Spectral/hp Element Methods for CFD (2005), Oxford University Press · Zbl 1116.76002
[47] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), John Wiley and Sons, Inc.: John Wiley and Sons, Inc. New York, NY · Zbl 0789.26002
[48] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego, CA, USA · Zbl 0918.34010
[49] Kharazmi, E.; Zayernouri, M.; Karniadakis, G. E., Petrov-Galerkin and spectral collocation methods for distributed order differential equations, SIAM J. Sci. Comput., 39, 3, A1003-A1037 (2017) · Zbl 1367.65113
[50] Babuška, I.; Suri, M., The p and h-p versions of the finite element method, basic principles and properties, SIAM Rev., 36, 4, 578-632 (1994) · Zbl 0813.65118
[51] Ainsworth, M.; Oden, J. T., A Posteriori Error Estimation in Finite Element Analysis, Vol. 37 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.