×

Fractional-order uniaxial visco-elasto-plastic models for structural analysis. (English) Zbl 1439.74077

Summary: We propose two fractional-order models for uniaxial large strains and visco-elasto-plastic behavior of materials in structural analysis. Fractional modeling seamlessly interpolates between the standard elasto-plastic and visco-elasto-plastic models, taking into account the history (memory) effects of the accumulated plastic strain to specify the state of stress. To this end, we develop two models, namely M1 and M2, corresponding to visco-elasto-plasticity considering a rate-dependent yield function and visco-plastic regularization, respectively. Specifically, we employ a fractional-order constitutive law that relates the Kirchhoff stress to the Caputo time-fractional derivative of the strain with order \(\beta \in(0, 1)\). When \(\beta \rightarrow 0\) the standard rate-independent elasto-plastic model with linear isotropic hardening is recovered by the models for general loading, and when \(\beta \rightarrow 1\), the corresponding classical visco-plastic model of Duvaut-Lions (Perzyna) type is recovered by the model M2 for monotonic loading. Since the material behavior is path-dependent, the evolution of the plastic strain is achieved by fractional-order time integration of the plastic strain rate with respect to time. The plastic strain rate is then obtained by means of the corresponding plastic slip and proper consistency conditions. Finally, we develop the so called fractional return-mapping algorithm for solving the nonlinear system of the equilibrium equations developed for each model. This algorithm seamlessly generalizes the standard return-mapping algorithm to its fractional counterpart. We test both models for convergence subject to prescribed strain rates, and subsequently we implement the models in a finite element truss code and solve for a two-dimensional snap-through instability problem. The simulation results demonstrate the flexibility of fractional-order modeling using the Caputo derivative to account for rate-dependent hardening and viscous dissipation, and its potential to effectively describe complex constitutive laws of engineering materials and especially biological tissues.

MSC:

74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74D05 Linear constitutive equations for materials with memory

References:

[1] Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (2010), Imperial College Press · Zbl 1210.26004
[2] West, B. J.; Bologna, M.; Grigolini, P., Physics of Fractal Operators (2003), Springer Verlag: Springer Verlag New York, NY
[3] Naghibolhosseini, M., Estimation of outer-middle ear transmission using DPOAEs and fractional-order modeling of human middle ear (2015), City University of New York: City University of New York NY, (Ph.D. thesis)
[4] Ichise, M.; Nagayanagi, Y.; Kojima, T., An analog simulation of non-integer order transfer functions for analysis of electrode processes, J. Electroanal. Chem. Interfacial Electrochem., 33, 2, 253-265 (1971)
[5] Benson, D. A.; Wheatcraft, S. W.; Meerschaert, M. M., Application of a fractional advection-dispersion equation, Water Resour. Res., 36, 6, 1403-1412 (2000)
[6] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1, 1-77 (2000) · Zbl 0984.82032
[7] Klages, R.; Radons, G.; Sokolov, I. M., Anomalous Transport: Foundations and Applications (2008), Wiley-VCH
[8] Bonet, J.; Wood, R., Nonlinear Continuum Mechanics for Finite Element Analysis (2008), Cambridge · Zbl 1142.74002
[9] Simo, J.; Hughes, T., Computational Inelasticity (1998), Springer-Verlag · Zbl 0934.74003
[10] Sumelka, W., Fractional viscoplasticity, (37th Solid Mechanics Conference, Warsaw, Poland (2012)), 102-103
[12] Sumelka, W., Fractional viscoplasticity, Mech. Res. Commun., 56, 31-36 (2014)
[13] Perzyna, P., The Constitutive Equations for Rate Sensitive Plastic Materials, Tech. Report (1962), DTIC Document
[14] Sumelka, W., Application of fractional continuum mechanics to rate independent plasticity, Acta Mech., 225, 11, 3247-3264 (2014) · Zbl 1302.74035
[15] Lubich, C., On the stability of linear multistep methods for Volterra convolution equations, IMA J. Numer. Anal., 3, 4, 439-465 (1983) · Zbl 0543.65095
[16] Lubich, C., Discretized fractional calculus, SIAM J. Math. Anal., 17, 3, 704-719 (1986) · Zbl 0624.65015
[17] Sanz-Serna, J., A numerical method for a partial integro-differential equation, SIAM J. Numer. Anal., 25, 2, 319-327 (1988) · Zbl 0643.65098
[18] Sugimoto, N., Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves, J. Fluid Mech., 225, 631-653, 4 (1991) · Zbl 0721.76011
[19] Gorenflo, R.; Mainardi, F.; Moretti, D.; Paradisi, P., Time fractional diffusion: a discrete random walk approach, Nonlinear Dynam., 29, 1-4, 129-143 (2002) · Zbl 1009.82016
[20] Diethelm, K.; Ford, N. J., Analysis of fractional differential equations, J. Math. Anal. Appl., 265, 2, 229-248 (2002) · Zbl 1014.34003
[21] Diethelm, K.; Ford, N. J.; Freed, A. D., Detailed error analysis for a fractional adams method, Numer. Algorithms, 36, 1, 31-52 (2004) · Zbl 1055.65098
[22] Langlands, T.; Henry, B., The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205, 2, 719-736 (2005) · Zbl 1072.65123
[23] Sun, Z.-Z.; Wu, X., A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56, 2, 193-209 (2006) · Zbl 1094.65083
[24] Lin, Y.; Xu, C., Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225, 2, 1533-1552 (2007) · Zbl 1126.65121
[25] Zayernouri, M.; Cao, W.; Zhang, Z.; Karniadakis, G. E., Spectral and discontinuous spectral element methods for fractional delay equations, SIAM J. Sci. Comput., 36, 6, B904-B929 (2014) · Zbl 1314.34159
[26] Zayernouri, M.; Karniadakis, G. E., Exponentially accurate spectral and spectral element methods for fractional ODEs, J. Comput. Phys., 257, 460-480 (2014) · Zbl 1349.65257
[27] Zayernouri, M.; Ainsworth, M.; Karniadakis, G. E., A unified Petrov-Galerkin spectral method for fractional PDEs, Comput. Methods Appl. Mech. Eng., 283, 1545-1569 (2015) · Zbl 1425.65127
[28] Zayernouri, M.; Karniadakis, G. E., Fractional spectral collocation methods for linear and nonlinear variable order FPDEs, J. Comput. Phys. (Special issue on FPDEs: Theory, Numerics, and Applications), 293, 312-338 (2015) · Zbl 1349.65531
[29] Zayernouri, M.; Matzavinos, T., Fractional Adams- Bashforth/Moulton methods: An application to the fractional Keller-Segel chemotaxis system, J. Comput. Phys., 317, 1-14 (2016) · Zbl 1349.65234
[30] Fu, Z.-J.; Chen, W.; Yang, H.-T., Boundary particle method for Laplace transformed time fractional diffusion equations, J. Comput. Phys., 235, 52-66 (2013) · Zbl 1291.76256
[31] Pang, G.; Chen, W.; Fu, Z., Space-fractional advection-dispersion equations by the Kansa method, J. Comput. Phys., 293, 280-296 (2015) · Zbl 1349.65522
[32] Chen, W.; Pang, G., A new definition of fractional Laplacian with application to modeling three-dimensional nonlocal heat conduction, J. Comput. Phys., 309, 350-367 (2016) · Zbl 1351.80001
[33] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego, CA, USA · Zbl 0918.34010
[34] Bittencourt, M., Computational Solid Mechanics: Variational Formulation and High Order Approximation (2014), CRC Press
[35] Wriggers, P., Nonlinear Finite Element Methods (2008), Springer · Zbl 1153.74001
[36] Carniel, T.; Muõz Rojas, P.; Vaz, M., A viscoelastic viscoplastic constitutive model including mechanical degradation: Uniaxial transient finite element formulation at finite strains and application to space truss structures, Appl. Math. Model., 39, 1725-1739 (2015) · Zbl 1443.74157
[37] Ingman, D.; Suzdalnitsky, J., Iteration method for equation of viscoelastic motion with fractional differential operator of damping, Comput. Methods Appl. Mech. Eng., 190, 37-38, 5027-5036 (2001) · Zbl 1020.74049
[38] Ingman, D.; Suzdalnitsky, J., Control of damping oscillations by fractional differential operator with time-dependent order, Comput. Methods Appl. Mech. Eng., 193, 52, 5585-5595 (2004) · Zbl 1079.70020
[39] Shen, Y.; Yang, S.; Xing, H.; Ma, H., Primary resonance of Duffing oscillator with two kinds of fractional-order derivatives, Int. J. Non-Linear Mech., 47, 975-983 (2012)
[40] Näsholm, S.; Holm, S., On a fractional Zener elastic wave equation, Fract. Calc. Appl. Anal., 16, 1, 26-50 (2013) · Zbl 1312.35185
[41] Lubich, C.; Schadle, A., Fast convolution for nonreflecting boundary conditions, SIAM J. Sci. Comput., 24, 161-182 (2002) · Zbl 1013.65113
[42] Tanaka, M.; Fujikawa, M.; Balzani, D.; Schröder, J., Robust numerical calculation of tangent moduli at finite strains based on complex-step derivative approximation and its application to localization analysis, Comput. Methods Appl. Mech. Engrg., 269, 454-470 (2014) · Zbl 1296.74129
[43] Lemaitre, J., Coupled elasto-plasticity and damage constitutive equations, Comput. Methods Appl. Mech. Engrg., 51, 1, 31-49 (1985) · Zbl 0546.73085
[44] Ngai, K., Relaxation and Diffusion in Complex Systems (2011), Springer
[45] Querleux, B., Computational Biophysics of the Skin (2014), CRC Press
[46] Weickenmeier, J.; Jabareen, M., Elastic-viscoplastic modeling of soft biological tissues using a mixed finite element formulation based on the relative deformation gradient, Int. J. Numer. Methods Biomed. Eng., 30, 11, 1238-1262 (2014)
[47] Schwiedrzik, J.; Zysset, P., An anisotropic elastic-viscoplastic damage model for bone tissue, Biomech. Model. Mechanobiol., 12, 2, 201-213 (2013)
[48] Sun, J.; Tsuang, Y.; Liu, T.; Hang, Y.; Cheng, C.; Lee, W., Viscoplasticity of rabbit skeletal muscle under dynamic cyclic loading, Clin. Biomech., 10, 5, 258-262 (1995)
[49] Romero, P.; Caete, C.; Aguilar, J.; Romero, F., Elasticity, viscosity and plasticity in lung parenchyma, (Milic-Emili, J., Applied Physiology in Respiratory Mechanics, Topics in Anaesthesia and Critical Care (1998), Springer Milan), 57-72
[50] Mainardi, F.; Gorenflo, R., Time-fractional derivatives in relaxation processes: a tutorial survey, Fract. Calc. Appl. Anal., 10, 3, 269-308 (2007) · Zbl 1157.26304
[51] Monje, C.; Chen, Y.; Vinagre, B.; Xue, D.; Feliu-Batlle, V., Fractional-order Systems and Controls (2010), Springer · Zbl 1211.93002
[52] Du, M.; Wang, Z.; Hu, H., Measuring memory with the order of fractional derivative, Sci. Rep., 3, 3431, 1-3 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.