×

Cluster varieties from Legendrian knots. (English) Zbl 1475.53094

Summary: Many interesting spaces – including all positroid strata and wild character varieties – are moduli of constructible sheaves on a surface with microsupport in a Legendrian link. We show that the existence of cluster structures on these spaces may be deduced in a uniform, systematic fashion by constructing and taking the sheaf quantizations of a set of exact Lagrangian fillings in correspondence with isotopy representatives whose front projections have crossings with alternating orientations. It follows in turn that results in cluster algebra may be used to construct and distinguish exact Lagrangian fillings of Legendrian links in the standard contact three space.

MSC:

53D35 Global theory of symplectic and contact manifolds
53D12 Lagrangian submanifolds; Maslov index
32S60 Stratifications; constructible sheaves; intersection cohomology (complex-analytic aspects)
05E99 Algebraic combinatorics

References:

[1] N. Arkani-Hamed, J. Bourjaily, F. Cachazo, A. Goncharov, A. Postnikov, and J. Trnka, Scattering amplitudes and the postiive Grassmannian, preprint, arXiv:1212.5605 [hep-th]. · Zbl 1365.81004
[2] D. Auroux, Mirror symmetry and T-duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. GGT 1 (2007), 51-91. · Zbl 1181.53076
[3] D. Babbitt and V. Varadarajan, Formal reduction theory of meromorphic differential equations: A group theoretic view, Pacific J. Math. 109 (1983), no. 1, 1-80. · Zbl 0533.34010 · doi:10.2140/pjm.1983.109.1
[4] D. Babbitt and V. Varadarajan, Deformations of nilpotent matrices over rings and reduction of analytic families of meromorphic differential equations, Mem. Amer. Math. Soc. 55 (1985), no. 325. · Zbl 0583.34007
[5] D. Babbitt and V. Varadarajan, Local moduli for meromorphic differential equations, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 95-98. · Zbl 0579.34005 · doi:10.1090/S0273-0979-1985-15300-5
[6] S. Bates and A. Weinstein, Lectures on the Geometry of Quantization, Berkeley Math. Lect. Notes, 8, Berkeley Center for Pure and Applied Mathematics, Berkeley, CA, 1997. · Zbl 1049.53061
[7] G. Birkhoff, The generalized Riemann problem for linear differential equations and allied problems for linear difference and \(q\)-difference equations, Proc. Amer. Acad. Arts and Sci. 49 (1913), 531-568.
[8] P. Boalch, Symplectic manifolds and isomonodromic deformations, Adv. Math. 163 (2001), no. 2, 137-205. · Zbl 1001.53059 · doi:10.1006/aima.2001.1998
[9] P. Boalch, Geometry and braiding of Stokes data; fission and wild character varieties, Ann. Math. (2) 179 (2014), no. 1, 301-365. · Zbl 1283.53075 · doi:10.4007/annals.2014.179.1.5
[10] P. Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Math. 163, Springer, Berlin, 1970. · Zbl 0244.14004
[11] P. Deligne, B. Malgrange, and J.-P. Ramis, Singularités irrégulièrs: Correspondance et documents, Doc. Math. (Paris), Soc. Math. France, Paris, 2007. · Zbl 1130.14001
[12] T. Ekholm, K. Honda, and T. Kálmán, Legendrian knots and exact Lagrangian cobordism, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 11, 2627-2689. · Zbl 1357.57044 · doi:10.4171/JEMS/650
[13] J. Etnyre, “Legendrian and transversal knots” in Handbook of Knot Theory, Elsevier, Amsterdam, 2005, 105-185. · Zbl 1095.57006
[14] J. Etnyre and K. Honda, Knots and contact geometry, I: Torus knots and the figure eight knot, J. Symplectic Geom. 1 (2001), no. 1, 63-120. · Zbl 1037.57021 · doi:10.4310/JSG.2001.v1.n1.a3
[15] B. Feng, Y.-H. He, K. Kennaway, and C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys. 12 (2008), no. 3, 489-545. · Zbl 1144.81501 · doi:10.4310/ATMP.2008.v12.n3.a2
[16] V. Fock and A. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 1-211. · Zbl 1099.14025 · doi:10.1007/s10240-006-0039-4
[17] V. Fock and A. Goncharov, “Cluster \(\mathcal{X} \)-varieties, amalgamation, and Poisson-Lie groups” in Algebraic Geometry and Number Theory, Progr. Math. 253, Birkhäuser, Boston, 2006, 27-68. · Zbl 1162.22014
[18] V. Fock and A. Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 6, 865-930. · Zbl 1180.53081 · doi:10.24033/asens.2112
[19] S. Fomin, “Total positivity and cluster algebras” in Proceedindgs of the International Congress of Mathematicians, Vol. II, Hindustan Book Agency, New Delhi, 2010. · Zbl 1226.13015
[20] S. Fomin, M. Shapiro, and D. Thurston, Cluster algebras and triangulated surfaces, I: Cluster complexes, Acta Math. 201 (2008), no. 1, 83-146. · Zbl 1263.13023 · doi:10.1007/s11511-008-0030-7
[21] S. Fomin and A. Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12 (1999), no. 2, 335-380. · Zbl 0913.22011 · doi:10.1090/S0894-0347-99-00295-7
[22] S. Fomin and A. Zelevinsky, Cluster algebras, I: Foundations, J. Amer. Math. Soc. 15 (2001), no. 2, 497-529. · Zbl 1021.16017 · doi:10.1090/S0894-0347-01-00385-X
[23] S. Fomin and A. Zelevinsky, Cluster algebras, II: Finite type classification, Invent. Math. 154 (2003), no. 1, 63-121. · Zbl 1054.17024 · doi:10.1007/s00222-003-0302-y
[24] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian Intersection Floer Theory: Anomaly and Obstruction, Part I, AMS/IP Stud. Adv. Math. 46, Amer. Math. Soc., Providence, and International Press, Somerville, MA, 2009. · Zbl 1181.53003
[25] D. Gaiotto, G. Moore, and A. Neitzke, Spectral networks, Ann. Henri Poincaré 14 (2013), no. 7, 1643-1731. · Zbl 1288.81132 · doi:10.1007/s00023-013-0239-7
[26] H. Geiges, An Introduction to Contact Topology, Cambridge Stud. Adv. Math 109, Cambridge Univ. Press, Cambridge, 2008. · Zbl 1153.53002
[27] A. Goncharov, “Ideal webs, moduli spaces of local systems, and 3d Calabi-Yau Categories” in Algebra, Geometry, and Physics in the 21st Century, Progr. Math. 324, Birkhäuser/Springer, Cham, 2017, 31-97. · Zbl 1392.13007
[28] A. Goncharov and R. Kenyon, Dimers and cluster integrable systems, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 5, 747-813. · Zbl 1288.37025 · doi:10.24033/asens.2201
[29] I. Gel’fand and R. MacPherson, Geometry in Grassmannians and a generalization of the dilogarithm, Adv. in Math. 44 (1982), no. 3, 279-312. · Zbl 0504.57021
[30] M. Gross, P. Hacking, and S. Keel, Birational geometry of cluster algebras, Algebr. Geom. 2 (2015), no. 2, 137-175. · Zbl 1322.14032 · doi:10.14231/AG-2015-007
[31] A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique, IV: Étude locale des schémas et des morphismes de schémas, III, Inst. Hautes Études Sci. Publ. Math. 28 (1966). · Zbl 0144.19904
[32] S. Guillermou, Quantization of conic Lagrangian submanifolds of cotangent bundles, preprint, arXiv:1212.5818 [math.SG]. · Zbl 1530.53003
[33] S. Guillermou, M. Kashiwara, and P. Schapira, Sheaf quantization of Hamiltonian isotopies and applications to nondisplaceability problems, Duke Math. J. 161 (2012), no. 2, 201-245. · Zbl 1242.53108 · doi:10.1215/00127094-1507367
[34] N. Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987), no. 1, 91-114. · Zbl 0627.14024 · doi:10.1215/S0012-7094-87-05408-1
[35] X. Jin and D. Treumann, Brane structures in microlocal sheaf theory, preprint, arXiv:1704.04291 [math.SG].
[36] M. Kashiwara and P. Schapira, Sheaves on Manifolds, Grundlehren Math. Wiss. 292, Springer, Berlin, 1990. · Zbl 0709.18001
[37] L. Katzarkov, M. Kontsevich, and T. Pantev, “Hodge theoretic aspects of mirror symmetry” in From Hodge Theory to Integrability and TQFT \(tt^*\)-Geometry, Proc. Sympos. Pure Math. 78, Amer. Math. Soc., Providence, 2008, 87-174. · Zbl 1206.14009
[38] B. Keller, “On differential graded categories” in International Congress of Mathematicians, Vol. II, Eur. Math. Soc., Zürich, 2006, 151-190. · Zbl 1140.18008
[39] B. Keller, “Cluster algebras and derived categories” in Derived Categories in Algebraic Geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, 123-183. · Zbl 1299.13027
[40] A. Knutson, T. Lam, and D. Speyer, Positroid varieties: Juggling and geometry, Compos. Math. 149 (2013), no. 10, 1710-1752. · Zbl 1330.14086 · doi:10.1112/S0010437X13007240
[41] M. Kontsevich and Y. Soibelman, “Affine structures and non-Archimedean analytic spaces” in The Unity of Mathematics, Progr. Math. 244, Birkhäuser, Boston, 2006, 321-385. · Zbl 1114.14027
[42] M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, preprint, arXiv:0811.2435 [math.AG]. · Zbl 1248.14060
[43] F. Lalonde and J.-C. Sikorav, Sois-variétés lagrangiennes et lagrangiennes exactes des fibrés contangents, Comment. Math. Helv. 66 (1991), no. 1, 18-33. · Zbl 0759.53022
[44] B. Leclerc, “Cluster algebras and representation theory” in Proceedings of the International Congress of Mathematicians, Vol. IV, Hindustan Book Agency, New Delhi, 2010, 2471-2488. · Zbl 1293.05388
[45] M. Loday-Richaud, Stokes phenomenon, multisummability and differential Galois groups, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 3, 849-906. · Zbl 0812.34004 · doi:10.5802/aif.1419
[46] J. Lurie, Derived algebraic geometry, available at http://www.math.harvard.edu/ lurie/papers/DAG.pdf.
[47] B. Malgrange, “La classification des connexions irrégulières à une variable” in Mathematics and Physics (Paris, 1979/1982), Progr. Math. 37, Birkhäuser, Boston, 1983, 381-399. · Zbl 0531.58015
[48] R. Marsh and J. Scott, Twists of Plücker coordinates as dimer partition functions, Comm. Math. Phys. 341 (2016), no. 3, 1-64. · Zbl 1341.13009
[49] J. Martinet and J.-P. Ramis, Elementary acceleration and multisummability, Ann. Inst. H. Poincaré Phys. Théor. 54 (1991), no. 4, 331-401. · Zbl 0748.12005
[50] G. Muller and D. Speyer, The twist for positroid varieties, Proc. Lond. Math. Soc. (3) 115 (2017), no. 5, 1014-1071. · Zbl 1408.14154 · doi:10.1112/plms.12056
[51] D. Nadler, Microlocal branes are constructible sheaves, Selecta Math. (N.S.) 15 (2009), no. 4, 563-619. · Zbl 1197.53116 · doi:10.1007/s00029-009-0008-0
[52] D. Nadler, Non-characteristic expansions of Legendrian singularities, preprint, arXiv:1507.01513 [math.SG].
[53] D. Nadler, Wrapped microlocal sheaves on pairs of pants, preprint, arXiv:1604.00114 [math.SG].
[54] D. Nadler and E. Zaslow, Constructible sheaves and the Fukaya category, J. Amer. Math. Soc. 22 (2009), no. 1, 233-286. · Zbl 1227.32019 · doi:10.1090/S0894-0347-08-00612-7
[55] L. Ng, The Legendrian satellite construction, preprint, arXiv:math/0112105 [math.GT].
[56] L. Ng, D. Rutherford, V. Shende, and S. Sivek, The cardinality of the augmentation category of a Legendrian link, Math. Res. Lett. 24 (2017), no. 6, 1845-1874. · Zbl 1396.57015 · doi:10.4310/MRL.2017.v24.n6.a14
[57] S. Oh, A. Postnikov, and D. Speyer, Weak separation and plabic graphs, Proc. Lond. Math. Soc. (3) 110 (2015), no. 3, 721-754. · Zbl 1309.05182 · doi:10.1112/plms/pdu052
[58] T. Pantev, B. Toën, M. Vaquie, and G. Vessozi, Shifted symplectic structures, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 271-328. · Zbl 1328.14027
[59] A. Postnikov, Total positivity, Grassmannians, and networks, preprint, arXiv:0609764 [math.CO].
[60] L. Polterovich, The surgery of Lagrange submanifolds, Geom. Funct. Anal. 1 (1991), no. 2, 198-210. · Zbl 0754.57027 · doi:10.1007/BF01896378
[61] J. Scott, Grassmannians and cluster algebras, Proc. London Math. Soc. (3) 92 (2006), no. 2, 345-380. · Zbl 1088.22009
[62] P. Seidel, Lagrangian two-spheres can be symplectically knotted, J. Differential Geom. 52 (1999), no. 1, 145-171. · Zbl 1032.53068 · doi:10.4310/jdg/1214425219
[63] P. Seidel, Lectures on categorical dynamics and symplectic topology, 2013, http://www-math.mit.edu/ seidel/937/lecture-notes.pdf.
[64] V. Shende and A. Takeda, Calabi-Yau structures on topological Fukaya categories, preprint, arXiv:1605.02721 [math.AG].
[65] V. Shende, D. Treumann, and H. Williams, On the combinatorics of exact Lagrangian surfaces, preprint, arXiv:1603.07449 [math.SG].
[66] V. Shende, D. Treumann and E. Zaslow, Legendrian knots and constructible sheaves, Invent. Math. 207 (2017), no. 3, 1031-1133. · Zbl 1369.57016 · doi:10.1007/s00222-016-0681-5
[67] G. Stokes, On the discontinuity of arbitrary constants that appear in divergent developments, Trans. Cambridge Phil. Soc. 10 (1864), 105.
[68] K. Talaska, A formula for Plücker coordinates associated with a planar network, Int. Math. Res. Not. IMRN 2008, art. ID rnn081. · Zbl 1170.05031
[69] D. Tamarkin, Microlocal condition for non-displaceablility, preprint, arXiv:0809.1584 [math.SG].
[70] T. Tanaka, Maximal Bennequin numbers and Kauffman polynomials of positive links, Proc. Amer. Math. Soc. 127 (1999), no. 11, 3427-3432. · Zbl 0983.57008 · doi:10.1090/S0002-9939-99-04983-7
[71] D. Thurston, “From dominoes to hexagons” in Proceedings of the 2014 Maui and 2015 Qinhuangdao Conferences in Honour of Vaughan F. R. Jones’ 60th Birthday, Proc. Centre Math. Appl. Austral. Nat. Univ. 46, Austral. Nat. Univ., Canberra, 2017, 399-414. · Zbl 1407.52021
[72] B. Toën, “Higher and derived stacks: A global overview” in Algebraic Geometry—Seattle 2005, Part I, Proc. Sympos. Pure Math 80, Amer. Math. Soc., Providence, 2009, 435-487. · Zbl 1183.14001
[73] B. Toën, “Lectures on dg-categories” in Topics in Algebraic and Topological K-Theory, Lecture Notes in Math. 2008, Springer, Berlin, 2011, 243-302. · Zbl 1216.18013
[74] B. Toën, Derived algebraic geometry, EMS Surv. Math. Sci. 1 (2014), no. 2, 153-240. · Zbl 1314.14005
[75] B. Toën and M. Vaquié, Moduli of objects in dg-categories, Ann. Sci. École Norm. Sup. (4) 40 (2007), no. 3, 387-444. · Zbl 1140.18005 · doi:10.1016/j.ansens.2007.05.001
[76] B. Toën and G. Vezzosi, “From HAG to DAG: Derived moduli stacks” in Axiomatic, Enriched and Motivic Homotopy Theory, NATO Sci. Ser. II Math Phys. Chem. 131, Kluwer, Dordrecht, 2004, 173-216. · Zbl 1076.14002
[77] B. Toën and G. Vezzosi, Homotopical algebraic geometry, I: Topos theory, Adv. Math. 193 (2005), no. 2, 257-372. · Zbl 1120.14012 · doi:10.1016/j.aim.2004.05.004
[78] B. Toën and G. Vezzosi, Homotopical algebraic geometry, II: Geometric stacks and applications, Mem. Amer. Math. Soc. 193 (2008), no. 902. · Zbl 1145.14003
[79] D. Treumann and E. Zaslow, Cubic planar graphs and Legendrian surface theory, Adv. Theor. Math. Phys. 22 (2018), no. 5, 1289-1345. · Zbl 07430949
[80] W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Pure Appl. Math. XIV, Interscience, New York, 1965. · Zbl 0133.35301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.