×

Hilbert’s 6th problem: exact and approximate hydrodynamic manifolds for kinetic equations. (English) Zbl 1294.35052

Summary: The problem of the derivation of hydrodynamics from the Boltzmann equation and related dissipative systems is formulated as the problem of a slow invariant manifold in the space of distributions. We review a few instances where such hydrodynamic manifolds were found analytically both as the result of summation of the Chapman-Enskog asymptotic expansion and by the direct solution of the invariance equation. These model cases, comprising Grad’s moment systems, both linear and nonlinear, are studied in depth in order to gain understanding of what can be expected for the Boltzmann equation. Particularly, the dispersive dominance and saturation of dissipation rate of the exact hydrodynamics in the short-wave limit and the viscosity modification at high divergence of the flow velocity are indicated as severe obstacles to the resolution of Hilbert’s 6th Problem. Furthermore, we review the derivation of the approximate hydrodynamic manifold for the Boltzmann equation using Newton’s iteration and avoiding smallness parameters, and compare this to the exact solutions. Additionally, we discuss the problem of projection of the Boltzmann equation onto the approximate hydrodynamic invariant manifold using entropy concepts. Finally, a set of hypotheses is put forward where we describe open questions and set a horizon for what can be derived exactly or proven about the hydrodynamic manifolds for the Boltzmann equation in the future.

MSC:

35Q20 Boltzmann equations
35Q35 PDEs in connection with fluid mechanics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
82B40 Kinetic theory of gases in equilibrium statistical mechanics
35C20 Asymptotic expansions of solutions to PDEs
82C40 Kinetic theory of gases in time-dependent statistical mechanics

References:

[1] Igor S. Aranson and Lorenz Kramer, The world of the complex Ginzburg-Landau equation, Rev. Modern Phys. 74 (2002), no. 1, 99 – 143. · Zbl 1205.35299 · doi:10.1103/RevModPhys.74.99
[2] V. I. Arnold, Proof of a theorem of A.N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian, Russian Math Surveys 18 (1963), no. 5, 9-36. · Zbl 0129.16606
[3] V. I. Arnol\(^{\prime}\)d, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk 18 (1963), no. 6 (114), 91 – 192 (Russian).
[4] V. I. Arnol\(^{\prime}\)d, Bifurcations of invariant manifolds of differential equations, and normal forms of neighborhoods of elliptic curves, Funkcional. Anal. i Priložen. 10 (1976), no. 4, 1 – 12 (Russian).
[5] V. I. Arnol\(^{\prime}\)d, Geometrical methods in the theory of ordinary differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 250, Springer-Verlag, New York-Berlin, 1983. Translated from the Russian by Joseph Szücs; Translation edited by Mark Levi.
[6] Claude Bardos, François Golse, and David Levermore, Fluid dynamic limits of kinetic equations. I. Formal derivations, J. Statist. Phys. 63 (1991), no. 1-2, 323 – 344. · Zbl 0737.76064 · doi:10.1007/BF01026608
[7] P. L. Bhatnagar, E. P. Gross and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev. 94 (1954), no. 3, 511-525. · Zbl 0055.23609
[8] Wolf-Jürgen Beyn and Winfried Kleß, Numerical Taylor expansions of invariant manifolds in large dynamical systems, Numer. Math. 80 (1998), no. 1, 1 – 38. · Zbl 0909.65044 · doi:10.1007/s002110050357
[9] A. V. Bobylëv, On the Chapman-Enskog and Grad methods for solving the Boltzmann equation, Dokl. Akad. Nauk SSSR 262 (1982), no. 1, 71 – 75 (Russian).
[10] A. V. Bobylëv, Exact solutions of the nonlinear Boltzmann equation and the theory of relaxation of a Maxwell gas, Teoret. Mat. Fiz. 60 (1984), no. 2, 280 – 310 (Russian, with English summary).
[11] A. V. Bobylëv, Quasistationary hydrodynamics for the Boltzmann equation, J. Statist. Phys. 80 (1995), no. 5-6, 1063 – 1083. · Zbl 1081.82612 · doi:10.1007/BF02179864
[12] T. Bodineau, I. Gallagher and L. Saint-Raymond, The Brownian motion as the limit of a deterministic system of hard-spheres, Preprint arXiv:1305.3397, 2013. · Zbl 1337.35107
[13] N. N. Bogoliubov, Problems of a dynamical theory in statistical physics, Studies in Statistical Mechanics, Vol. I, North-Holland, Amsterdam; Interscience, New York, 1962, pp. 1 – 118.
[14] Ludwig Boltzmann, Lectures on gas theory, Translated by Stephen G. Brush, University of California Press, Berkeley-Los Angeles, Calif., 1964.
[15] S. G. Brush, The kind of motion we call heat: A history of the kinetic theory of gases in the 19th century, Book 2: Statistical Physics and Irreversible Processes, North Holland, Amsterdam The Netherlands, 1976.
[16] J. W. Cahn, Free energy of a nonuniform system. II. Thermodynamic basis, J. Chem. Phys. 30 (1959), 1121-1124.
[17] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial energy. J. Chem. Phys., 28 (1958), 258-266.
[18] Eliodoro Chiavazzo, Alexander N. Gorban, and Iliya V. Karlin, Comparison of invariant manifolds for model reduction in chemical kinetics, Commun. Comput. Phys. 2 (2007), no. 5, 964 – 992.
[19] Matteo Colangeli, Iliya V. Karlin, and Martin Kröger, From hyperbolic regularization to exact hydrodynamics for linearized Grad’s equations, Phys. Rev. E (3) 75 (2007), no. 5, 051204, 10. · doi:10.1103/PhysRevE.75.051204
[20] Matteo Colangeli, Iliya V. Karlin, and Martin Kröger, Hyperbolicity of exact hydrodynamics for three-dimensional linearized Grad’s equations, Phys. Rev. E (3) 76 (2007), no. 2, 022201, 4. · doi:10.1103/PhysRevE.76.022201
[21] John C. Collins, Renormalization, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1984. An introduction to renormalization, the renormalization group, and the operator-product expansion. · Zbl 1094.53505
[22] P. Constantin, C. Foias, B. Nicolaenko, and R. Temam, Integral manifolds and inertial manifolds for dissipative partial differential equations, Applied Mathematical Sciences, vol. 70, Springer-Verlag, New York, 1989. · Zbl 0683.58002
[23] Leo Corry, David Hilbert and the axiomatization of physics (1894 – 1905), Arch. Hist. Exact Sci. 51 (1997), no. 2, 83 – 198. · Zbl 0890.01011 · doi:10.1007/BF00375141
[24] Sydney Chapman and T. G. Cowling, The mathematical theory of non-uniform gases. An account of the kinetic theory of viscosity, thermal conduction and diffusion in gases, Third edition, prepared in co-operation with D. Burnett, Cambridge University Press, London, 1970. · Zbl 0726.76084
[25] L. Q. Chen, Phase-field models for microstructure evolution, Annual Review of Materials Research, 32 (2002), no. 1, 113-140.
[26] Carlo Cercignani, The Boltzmann equation and its applications, Applied Mathematical Sciences, vol. 67, Springer-Verlag, New York, 1988. · Zbl 0646.76001
[27] A. Debussche and R. Temam, Inertial manifolds and slow manifolds, Appl. Math. Lett. 4 (1991), no. 4, 73 – 76. · Zbl 0723.58006 · doi:10.1016/0893-9659(91)90059-5
[28] P. Deligne, ed. Quantum fields and strings: a course for mathematicians, American Mathematical Society, Providence, RI, 1999.
[29] L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math. 159 (2005), no. 2, 245 – 316. · Zbl 1162.82316 · doi:10.1007/s00222-004-0389-9
[30] R. L. Dobrushin and Brunello Tirozzi, The central limit theorem and the problem of equivalence of ensembles, Comm. Math. Phys. 54 (1977), no. 2, 173 – 192. · Zbl 0391.60095
[31] B. Dubrovin and M. Elaeva, On the critical behavior in nonlinear evolutionary PDEs with small viscosity, Russ. J. Math. Phys. 19 (2012), no. 4, 449 – 460. · Zbl 1263.35019 · doi:10.1134/S106192081204005X
[32] J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working, Arch. Rational Mech. Anal. 88 (1985), no. 2, 95 – 133. · Zbl 0582.73004 · doi:10.1007/BF00250907
[33] F. J. Dyson, Divergence of perturbation theory in quantum electrodynamics, Physical Rev. (2) 85 (1952), 631 – 632. · Zbl 0046.21501
[34] John Ellis, Einan Gardi, Marek Karliner, and Mark A. Samuel, Padé approximants, Borel transforms and renormalons: the Bjorken sum rule as a case study, Phys. Lett. B 366 (1996), no. 1-4, 268 – 275. · doi:10.1016/0370-2693(95)01326-1
[35] D. Enskog, Kinetische theorie der Vorange in massig verdunnten Gasen. I Allgemeiner Teil, Almqvist and Wiksell, Uppsala, 1917. · JFM 47.0989.01
[36] Neil Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J. 21 (1971/1972), 193 – 226. · Zbl 0246.58015 · doi:10.1512/iumj.1971.21.21017
[37] Neil Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979), no. 1, 53 – 98. · Zbl 0476.34034 · doi:10.1016/0022-0396(79)90152-9
[38] R. P. Feynman, The character of physical law, MIT Press, Cambridge, MA, 1965.
[39] M. E. Fisher, The renormalization group in the theory of critical behavior, Reviews of Modern Physics 46 (1974), no. 4, 597-616.
[40] C. Foias, M. S. Jolly, I. G. Kevrekidis, G. R. Sell, and E. S. Titi, On the computation of inertial manifolds, Phys. Lett. A 131 (1988), no. 7-8, 433 – 436. · doi:10.1016/0375-9601(88)90295-2
[41] E. Fontich, Transversal homoclinic points of a class of conservative diffeomorphisms, J. Differential Equations 87 (1990), no. 1, 1 – 27. · Zbl 0717.58044 · doi:10.1016/0022-0396(90)90012-E
[42] N. Fröman and P. O. Fröman, JWKB Approximation, North-Holland, Amsterdam, 1965. · Zbl 0129.41907
[43] I. Gallagher, L. Saint-Raymond, and B. Texier, From Newton to Boltzmann: hard spheres and short-range potentials, Preprint arXiv:1208.5753, 2012. · Zbl 1315.82001
[44] Vicente Garzó and Andrés Santos, Kinetic theory of gases in shear flows, Fundamental Theories of Physics, vol. 131, Kluwer Academic Publishers Group, Dordrecht, 2003. Nonlinear transport; With a foreword by James W. Dufty. · Zbl 1140.82030
[45] J. Gnedenko, Zum sechsten Hilbertschen Problem, In Die Hilbertsche Probleme (ed. by P. Alexandrov), Ostwalds Klassiker der exakten Wissenschaften 252, Leipzig 1979, 144-147.
[46] François Golse and Laure Saint-Raymond, The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, Invent. Math. 155 (2004), no. 1, 81 – 161. · Zbl 1060.76101 · doi:10.1007/s00222-003-0316-5
[47] A. N. Gorban, Order-disorder separation: geometric revision, Physica A 374 (2007), no. 1, 85-102.
[48] A. N. Gorban, P. A. Gorban, and I. V. Karlin, Legendre integrators, post-processing and quasiequilibrium, J. Non-Newtonian Fluid Mech. 120 (2004), 149-167 · Zbl 1143.76533
[49] A. N. Gorban and I. V. Karlin, Structure and approximations of the Chapman-Enskog expansion, Sov. Phys. JETP 73 (1991), 637-641.
[50] Alexander N. Gorban and Iliya V. Karlin, Structure and approximations of the Chapman-Enskog expansion for the linearized Grad equations, Transport Theory Statist. Phys. 21 (1992), no. 1-2, 101 – 117. · Zbl 0756.76066 · doi:10.1080/00411459208203524
[51] Alexander N. Gorban and Iliya V. Karlin, Thermodynamic parameterization, Phys. A 190 (1992), no. 3-4, 393 – 404. · doi:10.1016/0378-4371(92)90044-Q
[52] Alexander N. Gorban and Iliya V. Karlin, Letter to the editor: nonarbitrary regularization of acoustic spectra, Transport Theory Statist. Phys. 22 (1993), no. 1, 121 – 124. · Zbl 0772.76064 · doi:10.1080/00411459308203534
[53] Alexander N. Gorban and Iliya V. Karlin, Method of invariant manifolds and regularization of acoustic spectra, Transport Theory Statist. Phys. 23 (1994), no. 5, 559 – 632. · Zbl 0812.76077 · doi:10.1080/00411459408204345
[54] A. N. Gorban and I. V. Karlin, General approach to constructing models of the Boltzmann equation, Physica A 206 (1994), 401-420.
[55] A. N. Gorban and I. V. Karlin, On “solid liquid” limit of hydrodynamic equations, Transport Theory and Stat. Phys. 24 (1995), no. 9, 1419-1421. · Zbl 0891.76004
[56] A. N. Gorban and I. V. Karlin, Scattering rates versus moments: Alternative Grad equations, Phys. Rev. E 54 (1996), R3109-R3112.
[57] A. N. Gorban and I. V. Karlin, Short-wave limit of hydrodynamics: a soluble example, Phys. Rev. Lett. 77 (1996), 282-285.
[58] A. N. Gorban and I. V. Karlin, Method of invariant manifold for chemical kinetics, Chem. Eng. Sci., 58 (2003), 4751-4768.
[59] A. N. Gorban and I. V. Karlin, Uniqueness of thermodynamic projector and kinetic basis of molecular individualism, Physica A 336 (2004), no. 3-4, 391-432.
[60] A. N. Gorban and I. V. Karlin, Invariant manifolds for physical and chemical kinetics, Lecture Notes in Physics, vol. 660, Springer-Verlag, Berlin, 2005. · Zbl 1086.82009
[61] Alexander N. Gorban and Iliya V. Karlin, Quasi-equilibrium closure hierarchies for the Boltzmann equation, Phys. A 360 (2006), no. 2, 325 – 364. · doi:10.1016/j.physa.2005.07.016
[62] Alexander N. Gorban, Iliya V. Karlin, and Andrei Yu. Zinovyev, Constructive methods of invariant manifolds for kinetic problems, Phys. Rep. 396 (2004), no. 4-6, 197 – 403. · doi:10.1016/j.physrep.2004.03.006
[63] Alexander N. Gorban, Iliya V. Karlin, and Vladimir B. Zmievskii, Two-step approximation of space-independent relaxation, Transport Theory Statist. Phys. 28 (1999), no. 3, 271 – 296. · Zbl 0946.76085 · doi:10.1080/00411459908206037
[64] A. N. Gorban, I. V. Karlin, V. B. Zmievskii, and T. F. Nonnenmacher, Relaxational trajectories: global approximations, Physica A 231 (1996), 648-672.
[65] A.N. Gorban and O. Radulescu, Dynamic and static limitation in multiscale reaction networks, revisited, Advances in Chemical Engineering 34 (2008), 103-173.
[66] A. N. Gorban and G. S. Yablonsky, Extended detailed balance for systems with irreversible reactions, Chemical Engineering Science 66 (2011), 5388-5399.
[67] Hermann Grabert, Projection operator techniques in nonequilibrium statistical mechanics, Springer Tracts in Modern Physics, vol. 95, Springer-Verlag, Berlin-New York, 1982.
[68] Harold Grad, On the kinetic theory of rarefied gases, Comm. Pure Appl. Math. 2 (1949), 331 – 407. · Zbl 0037.13104 · doi:10.1002/cpa.3160020403
[69] Harold Grad, Principles of the kinetic theory of gases, Handbuch der Physik (herausgegeben von S. Flügge), Bd. 12, Thermodynamik der Gase, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958, pp. 205 – 294.
[70] M. Grmela, Multiscale equilibrium and nonequilibrium thermodynamics in chemical engineering, Advances in Chemical Engineering 39 (2010), 75-129.
[71] Miroslav Grmela, Role of thermodynamics in multiscale physics, Comput. Math. Appl. 65 (2013), no. 10, 1457 – 1470. · Zbl 1342.82004 · doi:10.1016/j.camwa.2012.11.019
[72] Misha Gromov, Spaces and questions, Geom. Funct. Anal. Special Volume (2000), 118 – 161. GAFA 2000 (Tel Aviv, 1999). · Zbl 1006.53035
[73] John Guckenheimer and Alexander Vladimirsky, A fast method for approximating invariant manifolds, SIAM J. Appl. Dyn. Syst. 3 (2004), no. 3, 232 – 260. · Zbl 1059.37019 · doi:10.1137/030600179
[74] J. Hadamard, Sur l’iteration et les solutions asymptotiques des equations diffŕentielles, Bull. Soc. Math. France 29 (1901), 224-228. · JFM 32.0314.01
[75] E. H. Hauge, Exact and Chapman-Enskog solutions of the Boltzmann equation for the Lorentz model, Phys. Fluids 13 (1970), 1201 – 1208. · Zbl 0199.60305 · doi:10.1063/1.1693050
[76] David Hilbert, Mathematical problems, Bull. Amer. Math. Soc. 8 (1902), no. 10, 437 – 479. · JFM 33.0976.07
[77] David Hilbert, Begründung der kinetischen Gastheorie, Math. Ann. 72 (1912), no. 4, 562 – 577 (German). · JFM 43.1055.03 · doi:10.1007/BF01456676
[78] J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular theory of gases and liquids, J. Wiley, New York, 1954. · Zbl 0057.23402
[79] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. · Zbl 0355.58009
[80] I. Hosokawa and S. Inage, Local entropy balance through the shock wave, J. Phys. Soc. Japan 55 (1986), no. 10, 3402-3409.
[81] Tadanori Hyouguchi, Ryohei Seto, Masahito Ueda, and Satoshi Adachi, Divergence-free WKB theory, Ann. Physics 312 (2004), no. 1, 177 – 267. · Zbl 1050.81018 · doi:10.1016/j.aop.2004.01.005
[82] A. M. Il\(^{\prime}\)in, Matching of asymptotic expansions of solutions of boundary value problems, Translations of Mathematical Monographs, vol. 102, American Mathematical Society, Providence, RI, 1992. Translated from the Russian by V. Minachin [V. V. Minakhin].
[83] Christopher K. R. T. Jones, Geometric singular perturbation theory, Dynamical systems (Montecatini Terme, 1994) Lecture Notes in Math., vol. 1609, Springer, Berlin, 1995, pp. 44 – 118. · Zbl 0840.58040 · doi:10.1007/BFb0095239
[84] D. Jou, J. Casas-Vázquez, and G. Lebon, Extended irreversible thermodynamics, Springer-Verlag, Berlin, 1993. · Zbl 0785.73002
[85] Iliya V. Karlin, Simplest nonlinear regularization, Transport Theory Statist. Phys. 21 (1992), no. 3, 291 – 293. · Zbl 0775.82001 · doi:10.1080/00411459208203925
[86] Iliya V. Karlin, Exact summation of the Chapman-Enskog expansion from moment equations, J. Phys. A 33 (2000), no. 45, 8037 – 8046. · Zbl 0971.82036 · doi:10.1088/0305-4470/33/45/303
[87] I. V. Karlin, M. Colangeli, and M. Kröger, Exact linear hydrodynamics from the Boltzmann Equation, Phys. Rev. Lett. 100 (2008), 214503.
[88] I. V. Karlin, G. Dukek, and T. F. Nonnenmacher, Invariance principle for extension of hydrodynamics: Nonlinear viscosity, Phys. Rev. E 55 (1997), no. 2, 1573-1576.
[89] I. V. Karlin, G. Dukek, and T. F. Nonnenmacher, Gradient expansions in kinetic theory of phonons, Phys. Rev. B 55 (1997), 6324-6329.
[90] Iliya V. Karlin and Alexander N. Gorban, Hydrodynamics from Grad’s equations: what can we learn from exact solutions?, Ann. Phys. 11 (2002), no. 10-11, 783 – 833. , https://doi.org/10.1002/1521-3889(200211)11:10/113.0.CO;2-V · Zbl 1068.76074
[91] I. V. Karlin, A. N. Gorban, G. Dukek, and T. F. Nonnenmacher, Dynamic correction to moment approximations, Phys. Rev. E 57 (1998), 1668-1672.
[92] Nikolaos Kazantzis, Singular PDEs and the problem of finding invariant manifolds for nonlinear dynamical systems, Phys. Lett. A 272 (2000), no. 4, 257 – 263. · Zbl 1115.35316 · doi:10.1016/S0375-9601(00)00451-5
[93] N. Kazantzis and T. Good, Invariant manifolds and the calculation of the long-term asymptotic response of nonlinear processes using singular PDEs, Computers and Chemical Engineering 26 (2002), no. 7, 999-1012.
[94] Nikolaos Kazantzis, Costas Kravaris, and Lemonia Syrou, A new model reduction method for nonlinear dynamical systems, Nonlinear Dynam. 59 (2010), no. 1-2, 183 – 194. · Zbl 1183.70058 · doi:10.1007/s11071-009-9531-y
[95] A. I. Khinchin, Mathematical Foundations of Statistical Mechanics, Dover Publications, Inc., New York, N. Y., 1949. Translated by G. Gamow. · Zbl 0037.41102
[96] A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer-Verlag, Berlin-New York, 1977 (German). Reprint of the 1933 original. · Zbl 0007.21601
[97] A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton’s function, Dokl. Akad. Nauk SSSR (N.S.) 98 (1954), 527 – 530 (Russian). · Zbl 0056.31502
[98] A. A. Kornev, On a method of ”graph transformation” type for the numerical construction of invariant manifolds, Tr. Mat. Inst. Steklova 256 (2007), no. Din. Sist. i Optim., 237 – 251 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 256 (2007), no. 1, 223 – 237. · Zbl 1153.37450 · doi:10.1134/S0081543807010129
[99] D. J. Korteweg, Sur la forme que prennent les équations du mouvements des fluides si l’on tient compte des forces capillaires causées par des variations de densité, Archives Néerl. Sci. Exactes Nat. Ser II 6 (1901), 1-24. · JFM 32.0756.02
[100] Ryogo Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Japan 12 (1957), 570 – 586. , https://doi.org/10.1143/JPSJ.12.570 Ryogo Kubo, Mario Yokota, and Sadao Nakajima, Statistical-mechanical theory of irreversible processes. II. Response to thermal disturbance, J. Phys. Soc. Japan 12 (1957), 1203 – 1211. · doi:10.1143/JPSJ.12.1203
[101] A. Kurganov and P. Rosenau, Effects of a saturating dissipation in Burgers-type equations, Comm. Pure Appl. Math. 50 (1997), no. 8, 753 – 771. , https://doi.org/10.1002/(SICI)1097-0312(199708)50:83.0.CO;2-5 · Zbl 0888.35097
[102] S. H. Lam, D. A. Goussis, The CSP method for simplifying kinetics, International Journal of Chemical Kinetics 26 (1994), 461-486.
[103] M. Lampis, New approach to the Mott-Smith method for shock waves, Meccanica 12 (1977), 171-173. · Zbl 0413.76057
[104] Oscar E. Lanford III, Time evolution of large classical systems, Dynamical systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974) Springer, Berlin, 1975, pp. 1 – 111. Lecture Notes in Phys., Vol. 38.
[105] Peter D. Lax and C. David Levermore, The small dispersion limit of the Korteweg-de Vries equation. I, Comm. Pure Appl. Math. 36 (1983), no. 3, 253 – 290. , https://doi.org/10.1002/cpa.3160360302 Peter D. Lax and C. David Levermore, The small dispersion limit of the Korteweg-de Vries equation. II, Comm. Pure Appl. Math. 36 (1983), no. 5, 571 – 593. , https://doi.org/10.1002/cpa.3160360503 Peter D. Lax and C. David Levermore, The small dispersion limit of the Korteweg-de Vries equation. III, Comm. Pure Appl. Math. 36 (1983), no. 6, 809 – 829. · Zbl 0527.35074 · doi:10.1002/cpa.3160360606
[106] C. David Levermore, Moment closure hierarchies for kinetic theories, J. Statist. Phys. 83 (1996), no. 5-6, 1021 – 1065. · Zbl 1081.82619 · doi:10.1007/BF02179552
[107] Ming Li and Paul Vitányi, An introduction to Kolmogorov complexity and its applications, 2nd ed., Graduate Texts in Computer Science, Springer-Verlag, New York, 1997. · Zbl 0866.68051
[108] Pierre-Louis Lions and Nader Masmoudi, Une approche locale de la limite incompressible, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), no. 5, 387 – 392 (French, with English and French summaries). · Zbl 0937.35132 · doi:10.1016/S0764-4442(00)88611-5
[109] Tai-Ping Liu and Shih-Hsien Yu, Boltzmann equation: micro-macro decompositions and positivity of shock profiles, Comm. Math. Phys. 246 (2004), no. 1, 133 – 179. · Zbl 1092.82034 · doi:10.1007/s00220-003-1030-2
[110] Tai-Ping Liu, Tong Yang, and Shih-Hsien Yu, Energy method for Boltzmann equation, Phys. D 188 (2004), no. 3-4, 178 – 192. · Zbl 1098.82618 · doi:10.1016/j.physd.2003.07.011
[111] A. M. Lyapunov, The general problem of the stability of motion, Taylor & Francis, Ltd., London, 1992. Translated from Edouard Davaux’s French translation (1907) of the 1892 Russian original and edited by A. T. Fuller; With an introduction and preface by Fuller, a biography of Lyapunov by V. I. Smirnov, and a bibliography of Lyapunov’s works compiled by J. F. Barrett; Lyapunov centenary issue; Reprint of Internat. J. Control 55 (1992), no. 3 [ MR1154209 (93e:01035)]; With a foreword by Ian Stewart. · Zbl 0786.70001
[112] U. Maas and S. B. Pope, Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space, Combustion and Flame, 88 (1992), 239-264.
[113] Richard D. Mattuck, A guide to Feynman diagrams in the many-body problem, Dover Publications, Inc., New York, 1992. Reprint of the second (1976) edition.
[114] H. P. McKean Jr., A simple model of the derivation of fluid mechanics from the Boltzmann equation, Bull. Amer. Math. Soc. 75 (1969), 1 – 10. · Zbl 0217.56402
[115] J. D. Mengers and J. M. Powers, One-dimensional slow invariant manifolds for fully coupled reaction and micro-scale diffusion, SIAM J. Appl. Dyn. Syst. 12 (2013), no. 2, 560 – 595. · Zbl 1282.35044 · doi:10.1137/120877118
[116] Tim R. Morris, The exact renormalization group and approximate solutions, Internat. J. Modern Phys. A 9 (1994), no. 14, 2411 – 2449. · Zbl 0985.81604 · doi:10.1142/S0217751X94000972
[117] Jürgen Moser, Convergent series expansions for quasi-periodic motions, Math. Ann. 169 (1967), 136 – 176. · Zbl 0149.29903 · doi:10.1007/BF01399536
[118] Clément Mouhot, Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Partial Differential Equations 31 (2006), no. 7-9, 1321 – 1348. · Zbl 1101.76053 · doi:10.1080/03605300600635004
[119] J. Nafe and U. Maas, A general algorithm for improving ILDMs, Combust. Theory Modelling 6 (2002), 697-709.
[120] V. A. Palin and E. V. Radkevich, The Navier-Stokes approximation and Chapman-Enskog projection problems for kinetic equations, Tr. Semin. im. I. G. Petrovskogo 25 (2006), 184 – 225, 326 (Russian, with Russian summary); English transl., J. Math. Sci. (N.Y.) 135 (2006), no. 1, 2721 – 2748. · Zbl 1115.35102 · doi:10.1007/s10958-006-0140-8
[121] H. Poincaré, Les méthodes nouvelles de la mécanique céleste, Vols. 1-3. Gauthier-Villars, Paris, 1892/1893/1899. · JFM 25.1847.03
[122] Baldwin Robertson, Equations of motion in nonequilibrium statistical mechanics, Phys. Rev. (2) 144 (1966), 151 – 161. · Zbl 0964.82507
[123] Philip Rosenau, Extending hydrodynamics via the regularization of the Chapman-Enskog expansion, Phys. Rev. A (3) 40 (1989), no. 12, 7193 – 7196. · doi:10.1103/PhysRevA.40.7193
[124] M. R. Roussel and S. J. Fraser, Geometry of the steady-state approximation: Perturbation and accelerated convergence methods, J. Chem. Phys. 93 (1990), 1072-1081.
[125] Laure Saint-Raymond, From the BGK model to the Navier-Stokes equations, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 2, 271 – 317 (English, with English and French summaries). · Zbl 1067.76078 · doi:10.1016/S0012-9593(03)00010-7
[126] Laure Saint-Raymond, Hydrodynamic limits of the Boltzmann equation, Lecture Notes in Mathematics, vol. 1971, Springer-Verlag, Berlin, 2009. · Zbl 1171.82002
[127] L. Saint-Raymond, A mathematical PDE perspective on the Chapman-Enskog expansion, Bull. Amer. Math. Soc., 51 (2014), no. 2, 247-275. · Zbl 1295.35353
[128] A. Santos, Nonlinear viscosity and velocity distribution function in a simple longitudinal flow, Phys. Rev. E 62 (2000), 6597-6607.
[129] Lee A. Segel and Marshall Slemrod, The quasi-steady-state assumption: a case study in perturbation, SIAM Rev. 31 (1989), no. 3, 446 – 477. · Zbl 0679.34066 · doi:10.1137/1031091
[130] M. A. Shubin, Pseudodifferential operators and spectral theory, 2nd ed., Springer-Verlag, Berlin, 2001. Translated from the 1978 Russian original by Stig I. Andersson. · Zbl 0980.35180
[131] M. Slemrod, Admissibility criteria for propagating phase boundaries in a van der Waals fluid, Arch. Rational Mech. Anal. 81 (1983), no. 4, 301 – 315. · Zbl 0505.76082 · doi:10.1007/BF00250857
[132] M. Slemrod, Renormalization of the Chapman-Enskog expansion: isothermal fluid flow and Rosenau saturation, J. Statist. Phys. 91 (1998), no. 1-2, 285 – 305. · Zbl 0917.76079 · doi:10.1023/A:1023048322851
[133] Marshall Slemrod, Constitutive relations for monatomic gases based on a generalized rational approximation to the sum of the Chapman-Enskog expansion, Arch. Ration. Mech. Anal. 150 (1999), no. 1, 1 – 22. · Zbl 0946.76087 · doi:10.1007/s002050050178
[134] Marshall Slemrod, Chapman-Enskog \Rightarrow viscosity-capillarity, Quart. Appl. Math. 70 (2012), no. 3, 613 – 624. · Zbl 1247.35135
[135] M. Slemrod, From Boltzmann to Euler: Hilbert’s 6th problem revisited, Comput. Math. Appl. 65 (2013), no. 10, 1497 – 1501. · Zbl 1382.76215 · doi:10.1016/j.camwa.2012.08.016
[136] Sauro Succi, The lattice Boltzmann equation for fluid dynamics and beyond, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 2001. Oxford Science Publications. · Zbl 0990.76001
[137] Michel Talagrand, A new look at independence, Ann. Probab. 24 (1996), no. 1, 1 – 34. · Zbl 0858.60019 · doi:10.1214/aop/1042644705
[138] Michel Talagrand, Rigorous low-temperature results for the mean field \?-spins interaction model, Probab. Theory Related Fields 117 (2000), no. 3, 303 – 360. · doi:10.1007/s004400050009
[139] Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988. · Zbl 0662.35001
[140] A. N. Tihonov, Systems of differential equations containing small parameters in the derivatives, Mat. Sbornik N. S. 31(73) (1952), 575 – 586 (Russian).
[141] François Trèves, Introduction to pseudodifferential and Fourier integral operators. Vol. 1, Plenum Press, New York-London, 1980. Pseudodifferential operators; The University Series in Mathematics. · Zbl 0453.47027
[142] G. E. Uhlenbeck, Some notes on the relation between fluid mechanics and statistical physics, Annual review of fluid mechanics, Vol. 12, Annual Reviews, Palo Alto, Calif., 1980, pp. 1 – 9. · Zbl 0457.76002
[143] G. Veneziano, Construction of a crossing-symmetric, Regge-behaved amplitude for linearly rising trajectories, Nuovo Cimento A 57 (1968), 190-197.
[144] A. Voros, The return of the quartic oscillator: the complex WKB method, Ann. Inst. H. Poincaré Sect. A (N.S.) 39 (1983), no. 3, 211 – 338 (English, with French summary). · Zbl 0526.34046
[145] S. Weinberg, The quantum theory of fields, Cambridge University Press (1995).
[146] J. Zinn-Justin, Quantum field theory and critical phenomena, 2nd ed., International Series of Monographs on Physics, vol. 85, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. · Zbl 0865.00014
[147] D. N. Zubarev, Nonequilibrium statistical thermodynamics, Consultants Bureau, New York-London, 1974. Translated from the Russian by P. J. Shepherd; Studies in Soviet Science.
[148] A. K. Zvonkin and L. A. Levin, The complexity of finite objects and the basing of the concepts of information and randomness on the theory of algorithms, Uspehi Mat. Nauk 25 (1970), no. 6(156), 85 – 127 (Russian). · Zbl 0222.02027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.