×

On the critical behavior in nonlinear evolutionary PDEs with small viscosity. (English) Zbl 1263.35019

Summary: The problem of general dissipative regularization of the quasilinear transport equation is studied. We argue that the local behavior of solutions to the regularized equation near the point of gradient catastrophe for the transport equation is described by the logarithmic derivative of the Pearcey function; this statement generalizes a result of A. M. Il’in [Matching of asymptotic expansions of solutions of boundary value problems. Providence, RI: American Mathematical Society (AMS) (1992; Zbl 0754.34002)]. We provide some analytic arguments supporting the conjecture and test it numerically.

MSC:

35B25 Singular perturbations in context of PDEs

Citations:

Zbl 0754.34002

Software:

FreeFem++

References:

[1] É. Brézin, E. Marinari, and G. Parisi, ”A Nonperturbative Ambiguity Free Solution of a String Model,” Phys. Lett. B 242(1), 35–38 (1990). · doi:10.1016/0370-2693(90)91590-8
[2] T. Claeys and T. Grava, ”Universality of the Break-Up Profile for the KdV Equation in the Small Dispersion Limit Using the Riemann-Hilbert Approach,” Comm. Math. Phys. 286(3), 979–1009 (2009). · Zbl 1173.35654 · doi:10.1007/s00220-008-0680-5
[3] B. Dubrovin, ”On Hamiltonian Perturbations of Hyperbolic Systems of Conservation Laws, II: Universality of Critical Behaviour,” Comm. Math. Phys. 267(1), 117–139 (2006). · Zbl 1109.35070 · doi:10.1007/s00220-006-0021-5
[4] B. Dubrovin, T. Grava, and C. Klein, ”Numerical Study of Break-Up in Generalized Korteweg-de Vries and Kawahara Equations,” SIAM J. Appl. Math. 71(4), 983–1008 (2011). · Zbl 1231.65175 · doi:10.1137/100819783
[5] B. Dubrovin and Y. Zhang, Normal Forms of Hierarchies of Integrable PDEs, Frobenius Manifolds and Gromov-Witten Invariants, arXiv: math/0108160.
[6] C. A. J. Fletcher, Computational Galerkin Methods (Springer-Verlag, New York-Berlin, 1984). · Zbl 0533.65069
[7] C. A. J. Fletcher, Computational Techniques for Fluid Dynamics. Vol. 2. Specific Techniques for Different Flow Categories, 2nd ed. (Springer-Verlag, Berlin, 1991; ”Mir,” Moscow, 1991).
[8] A. R. Mitchell and R. Wait, The Finite Element Method in Partial Differential Equations (Wiley-Interscience [John Wiley&Sons], London-New York-Sydney, 1977). · Zbl 0344.35001
[9] G. Moore, ”Geometry of the String Equations,” Comm. Math. Phys. 133(2), 261–304 (1990). · Zbl 0727.35134 · doi:10.1007/BF02097368
[10] W. G. Strang and G. J. Fix, An Analysis of the Finite Element Method (Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973; Izdat. ”Mir,” Moscow, 1977). · Zbl 0356.65096
[11] F. Hecht, FreeFem++. Third ed., Version 3.19-1. http://www.freefem.org/ff++/ .
[12] A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems (”Nauka”, Moscow, 1989; American Mathematical Society, Providence, RI, 1992).
[13] Liu Si-Qi, and Y. Zhang, ”On Quasi-Triviality and Integrability of a Class of Scalar Evolutionary PDEs,” J. Geom. Phys. 57(1), 101–119 (2006). · Zbl 1111.37056 · doi:10.1016/j.geomphys.2006.02.005
[14] B. Suleimanov, ”Onset of Nondissipative Shock Waves and the ”Nonperturbative” Quantum Theory of Gravitation,” Zh. ‘Eksper. Teoret. Fiz. 105(5), 1089–1097 (1994) [J. Exp. Theor. Phys. 78 (5), 583–587 (1994)].
[15] G. B. Whitham, Linear and Nonlinear Waves (Wiley-Interscience [John Wiley&Sons], New York-London-Sydney, 1974; ”Mir,” Moscow, 1977).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.