×

Moment closure hierarchies for kinetic theories. (English) Zbl 1081.82619

Summary: This paper presents a systematicnonperturbative derivation of a hierarchy of closed systems of moment equations corresponding to any classical kinetic theory. The first member of the hierarchy is the Euler system, which is based on Maxwellian velocity distributions, while the second member is based on nonisotropic Gaussian velocity distributions. The closure proceeds in two steps. The first ensures that every member of the hierarchy is hyperbolic, has an entropy, and formally recovers the Euler limit. The second involves modifying the collisional terms so that members of the hierarchy beyound the second also recover the correct Navier-Stokes behavior. This is achieved through the introduction of a generalization of the BGK collision operator. The simplest such system in three spatial dimensions is a 14-moment closure, which also recovers the behavior of the Grad 13-moment system when the velocity distributions lie near local Maxwellians. The closure procedure can be applied to a general class of kinetic theories.

MSC:

82C40 Kinetic theory of gases in time-dependent statistical mechanics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
Full Text: DOI

References:

[1] L. Arkeryd, R. Esposito, and M. Pulverenti, the Boltzmann equation for weakly inhomogeneous data,Commun. Math. Phys. 111:393–407 (1987). · Zbl 0663.76080 · doi:10.1007/BF01238905
[2] C. Bardos, F. Golse, and D. Levermore, Fluid dynamic limits of kinetic equations I: Formal derivations,J. Stat. Phys. 63:323–344 (1991). · doi:10.1007/BF01026608
[3] P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases I: Small amplitude processes in charged and neutral one-component systems,Phys. Rev. 94:511–524 (1954). · Zbl 0055.23609 · doi:10.1103/PhysRev.94.511
[4] G. A. Bird,Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press, Oxford, (1994).
[5] A. V. Bobylev, The Chapman-Enskog and Grad methods for solving the Boltzmann equation,Sov. Phys. Dokl. 27:29–31 (1982).
[6] L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen,Sitzungsber. Akad. Wiss. Wien 66:275–370 (1982); English transl., Further studies on the thermal equilibrium of gas molecules, inKinetic Theory, Vol. 2, S. G. Brush, ed., (Pergamon Press, London, 1966), pp. 88–174.
[7] C. Cercignani,The Boltzmann Equation and Its Applications (Springer-Verlag, New York, 1988). · Zbl 0646.76001
[8] G. Q. Chen, C. D. Levermore, and T. P. Liu, Hyperbolic conservation laws with Stiff relaxation terms and entropy,Commun. Pure Appl. Math. 47:787–830 (1994). · Zbl 0806.35112 · doi:10.1002/cpa.3160470602
[9] L. Desvillettes, Some applications of the method of moments for the homogeneous Boltzmann and Kac equations,Arch. Rat. Mech. Anal. 123:387–404 (1994). · Zbl 0784.76081 · doi:10.1007/BF00375586
[10] W. Dreyer, Maximisation of the entropy in non-equilibrium,J. Phys. A: Math. Gen. 20:6505–6517 (1987). · Zbl 0633.76081 · doi:10.1088/0305-4470/20/18/047
[11] T. Elmroth, Global bounds of moments of solutions of the Boltzmann equation for forces of infinite range,Arch. Rat. Mech. Anal. 82:1–12 (1983). · Zbl 0503.76091 · doi:10.1007/BF00251722
[12] K. O. Friedrichs and P. D. Lax, Systems of conservation laws with a convex extension,Proc. Natl. Acad. Sci. USA 68:1686–1688 (1971). · Zbl 0229.35061 · doi:10.1073/pnas.68.8.1686
[13] S. K. Godunov, An interesting class of quasilinear systems,Sov. Math. Dokl. 2:947–949 (1961). · Zbl 0125.06002
[14] F. Golse and F. Poupoud. Stationary solutions of the linearized Boltzmann equation in a half-space,Math. Meth. Appl. Sci. 11:483–502 (1989). · Zbl 0679.35021 · doi:10.1002/mma.1670110406
[15] T. I. Gombosi, C. P. T. Groth, P. L. Roe, and S. L. Brown, 35-moment closure for rarefied gases: Derivation, transport equations, and wave structure,Phys. Fluids, submitted (1994).
[16] A. N. Gorbin and I. V. Karlin Thermodynamic parameterization,Physica A: Math. Gen. 190:393–404 (1992).
[17] A. N. Gorbin and I. V. Karlin Method of invariant manifolds and the regularization of acoustic spectra,Transport Theory Stat. Phys. 23:559–632.
[18] H. Grad, On the kinetic theory of rarefied gases,Commun. Pure Appl. Math. 2:331–407 (1949). · Zbl 0037.13104 · doi:10.1002/cpa.3160020403
[19] C. P. T. Groth and C. D. Levermore, Beyond the Navier-Stokes approximation: Transport corrections to the Gaussian closure, in preparation (1996).
[20] A. Harten, On the symmetric form of systems of conservation laws with entropy,J. Comp. Phys. 49:151–164 (1983). · Zbl 0503.76088 · doi:10.1016/0021-9991(83)90118-3
[21] A. Harten, P. D. Lax, C. D. Levermore, and W. J. Morokoff, Convex entropies and hyperbolicity for general Euler equations,SIAM J. Num. Anal., submitted (1995). · Zbl 0922.35089
[22] F. Hertweck, Allgemeine 13-Momenten-Näherung zur Fokker-Planck Gleichung eins Plasmas,Z. Naturforsch. 20a:1243–1255 (1965). · Zbl 0127.21703
[23] L. H. Holway, Kinetic theory of shock structure using an ellipsoidal distribution function, inRarefied Gas Dynamics, Vol. I, C. L. Brundin, ed. (Academic Press, New York, 1966), pp. 759–784.
[24] S. Jin and C. D. Levermore, Numerical schemes for hyperbolic conservation laws with stiff relaxation terms,J. Comp. Phys., accepted (1996). · Zbl 0860.65089
[25] P. D. Lax,Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves (SIAM, Philadelphia, 1973). · Zbl 0268.35062
[26] C. D. Levermore, Entropic convergence and the linearized limit for the Boltzmann equation,Commun. Partial Differential Equations 18:1231–1248 (1993). · Zbl 0853.35094 · doi:10.1080/03605309308820972
[27] C. D. Levermore, W. J. Morokoff, and B. T. Nadiga, Moment realizability and the validity of the Navier-Stokes approximation for rarefied gas dynamics,Phys. Fluids, submitted (1995). · Zbl 1185.76858
[28] C. D. Levermore and W. J. Morokoff, The Gaussian closure for the Boltzmann equation,SIAM J. Appl. Math., submitted (1996). · Zbl 0922.76273
[29] C. D. Levermore and B. A. Wagner, Robust fluid dynamical closures of the Broadwell model,Phys. Lett. A 174:220–228 (1993). · doi:10.1016/0375-9601(93)90762-O
[30] A. Majda,Compressible Fluid Flow and Systems of conservation Laws in Several Space Dimensions (Springer-Verlag, New York, 1984). · Zbl 0537.76001
[31] J. C. Maxwell, On the dynamical theory of gases,Phil. Trans. R. Soc. Lond. 157:49–88 (1866); also inThe Scientific Papers of James Clerk Maxwell, Vol. 2 (Dover, New York, 1965), pp. 26–78.
[32] M. Mock, Systems of conservation laws of mixed type.J. Differential Equations 37:70–88 (1980). · doi:10.1016/0022-0396(80)90089-3
[33] I. Müller and T. Ruggeri,Extended Thermodynamics (Springer-Verlag, New York, 1993).
[34] P. Rosenau, Extending hydrodynamics via the regularization of the Chapman-Enskog expansion,Phys. Rev. A 40:7193–7196 (1989). · doi:10.1103/PhysRevA.40.7193
[35] B. Wennberg, On moments and uniqueness for solutions to the space homogeneous Boltzmann equation,Trans. Theory Stat. Phys. 23:533–539 (1994). · Zbl 0812.76080 · doi:10.1080/00411459408203878
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.