×

Dendriform-Nijenhuis bialgebras and DN-associative Yang-Baxter equations. (English) Zbl 1469.16085

A dendriform-Nijenhuis (briefly, DN) bialgebra, as introduced by P. Leroux [Int. J. Math. Math. Sci. 2004, No. 49–52, 2595–2615 (2004; Zbl 1116.17002)], is a triple \((A,\mu,\Delta)\), where \(\mu\) is an associative coproduct on \(A\), \(\Delta\) is a coassociative coproduct on \(A\), with the compatibility \[ \Delta(ab)=a\Delta(b)+\Delta(a)- \mu\circ \Delta(a)\otimes b. \] Using a 1-cocycle condition, a structure of DN bialgebra on the algebra of planar rooted trees, in the same way as for the Connes-Kreimer Hopf algebra, leading to the notion of free operated DN bialgebra. It is also proved that any DN bialgebra naturally carries a Lie algebra structure.
Other constructions of DN bialgebras on a given algebra are associated to any element \(r\) of \(A\otimes A\): this element should satisfy an invariance condition and a variant of the classical Yang-Baxter equation, called the DN-AYBE. A DN bialgebra obtained in this way is called quasitriangular and it is shown that such an object carries a structure of post-Lie algebras, therefore two extra Lie brackets. A classification of the solutions of the DN-AYBE in dimension 2 and 3 is done in the last section of the paper.

MSC:

16W99 Associative rings and algebras with additional structure
16S10 Associative rings determined by universal properties (free algebras, coproducts, adjunction of inverses, etc.)
16T10 Bialgebras
16T30 Connections of Hopf algebras with combinatorics
17B38 Yang-Baxter equations and Rota-Baxter operators
17B60 Lie (super)algebras associated with other structures (associative, Jordan, etc.)

Citations:

Zbl 1116.17002
Full Text: DOI

References:

[1] Aguiar, M., Infinitesimal Hopf algebras, (New Trends in Hopf Algebra Theory. New Trends in Hopf Algebra Theory, La Falda, 1999. New Trends in Hopf Algebra Theory. New Trends in Hopf Algebra Theory, La Falda, 1999, Contemp. Math., vol. 267 (2000), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 1-29 · Zbl 0982.16028
[2] Aguiar, M., Pre-Poisson algebras, Lett. Math. Phys., 54, 263-277 (2000) · Zbl 1032.17038
[3] Assem, I.; Simson, D.; Skowronski, A., Elements of the Representation Theory of Associative Algebras, Vol. 1, London Math. Soc. Student Texts, vol. 65 (2006), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, U.K. · Zbl 1092.16001
[4] Bai, C. M.; Guo, L.; Ni, X., Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras, Commun. Math. Phys., 297, 553-596 (2010) · Zbl 1206.17020
[5] Bai, C. M.; Guo, L.; Ni, X., \( \mathcal{O} \)-operators on associative algebras and associative Yang-Baxter equations, Pac. J. Math., 256, 257-289 (2012) · Zbl 1285.16031
[6] Bai, C. M.; Gao, X.; Guo, L.; Zhang, Y., Operator forms of nonhomogeneous associative classical Yang-Baxter equation
[7] Bruned, Y.; Hairer, M.; Zambotti, L., Algebraic renormalisation of regularity structures, Invent. Math., 215, 1039-1156 (2019) · Zbl 1481.16038
[8] Cariñena, J. F.; Grabowski, J.; Marmo, G., Quantum bi-Hamiltonian systems, Int. J. Mod. Phys. A, 15, 4797-4810 (2000) · Zbl 1002.81026
[9] Chapoton, F.; Livernet, M., Pre-Lie algebras and the rooted trees operad, Int. Math. Res. Not., 395-408 (2001) · Zbl 1053.17001
[10] Connes, A.; Kreimer, D., Hopf algebras, renormalization and non-commutative geometry, Commun. Math. Phys., 199, 203-242 (1998) · Zbl 0932.16038
[11] Ebrahimi-Fard, K., On the associative Nijenhuis relation, Electron. J. Comb., 11 (2004), 13 pp. · Zbl 1074.17001
[12] Ebrahimi-Fard, K., Rota-Baxter algebras and the Hopf algebra of renormalization (2006), Bonn University, Ph.D. Thesis
[13] Ebrahimi-Fard, K.; Leroux, P., Generalized shuffles related to Nijenhuis and TD-algebras, Commun. Algebra, 37, 3064-3094 (2009) · Zbl 1189.17006
[14] Foissy, L., Les algèbres de Hopf des arbres enracinés décorés. I. (French), Bull. Sci. Math., 126, 193-239 (2002) · Zbl 1013.16026
[15] Foissy, L., Introduction to Hopf algebra of rooted trees, available at · Zbl 1017.16031
[16] Foissy, L., The infinitesimal Hopf algebra and the poset of planar forests, J. Algebraic Comb., 30, 277-309 (2009) · Zbl 1192.16033
[17] Gao, X.; Lei, P.; Zhang, T. J., Left counital Hopf algebras on free Nijenhuis algebras, Commun. Algebra, 46, 4868-4883 (2018) · Zbl 1400.16023
[18] Gao, X.; Wang, X. M., Infinitesimal unitary Hopf algebras and planar rooted forests, J. Algebraic Comb., 49, 437-460 (2019) · Zbl 1437.16030
[19] Gao, X.; Zhang, Y., Weighted infinitesimal bialgebras · Zbl 1524.16048
[20] Gao, X.; Guo, L.; Zhang, Y., Hopf algebra of multi-decorated rooted forests, free matching Rota-Baxter algebras and Gröbner-Shirshov bases · Zbl 1506.16047
[21] Grossman, R.; Larson, R. G., Hopf-algebraic structure of families of trees, J. Algebra, 126, 184-210 (1989) · Zbl 0717.16029
[22] Guo, L., Operated semigroups, Motzkin paths and rooted trees, J. Algebraic Comb., 29, 35-62 (2009) · Zbl 1227.05271
[23] Guo, L., An Introduction to Rota-Baxter Algebra (2012), International Press: International Press Somerville, MA, U.S.A. · Zbl 1271.16001
[24] Guo, L.; Li, Y., Braided dendriform and tridendriform algebras and braided Hopf algebras of planar trees
[25] Golubchik, I. Z.; Sokolov, V. V., Generalized operator Yang-Baxter equations, integrable ODEs and nonassociative algebras, J. Nonlinear Math. Phys., 7, 184-197 (2000) · Zbl 1119.37318
[26] Holtkamp, R., Comparison of Hopf algebras on trees, Arch. Math. (Basel), 80, 368-383 (2003) · Zbl 1056.16030
[27] Joni, S.; Rota, G. C., Coalgebras and bialgebras in combinatorics, Stud. Appl. Math., 61, 93-139 (1979) · Zbl 0471.05020
[28] Kobayashi, Y.; Shirayanagi, K.; Takahasi, S.-E.; Tsukada, M., A complete classification of three-dimensional algebras over \(\mathbb{R}\) and \(\mathbb{C} \)
[29] Kosmann-Schwarzbach, Y.; Magri, F., Poisson-Nijenhuis structures, Ann. Inst. Henri Poincaré Phys. Théor., 53, 35-81 (1990) · Zbl 0707.58048
[30] Kuroš, A. G., Free sums of multiple operator algebras, Sib. Mat. Zh., 1, 62-70 (1960) · Zbl 0096.25304
[31] Lei, P.; Guo, L., Nijenhuis algebras, NS algebras, and N-dendriform algebras, Front. Math. China, 7, 827-846 (2012) · Zbl 1262.16040
[32] Leroux, P., Construction of Nijenhuis operators and dendriform trialgebras, Int. J. Math. Math. Sci., 2595-2615 (2004) · Zbl 1116.17002
[33] Loday, J. L., Cyclic Homology (1992), Springer-Verlag: Springer-Verlag Berlin · Zbl 0780.18009
[34] Loday, J. L.; Ronco, M. O., Hopf algebra of the planar binary trees, Adv. Math., 139, 293-309 (1998) · Zbl 0926.16032
[35] Loday, J. L.; Ronco, M., Trialgebras and families of polytopes, in homotopy theory, (Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-Theory. Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-Theory, Contemp. Math., vol. 346 (2004), Amer. Soc.: Amer. Soc. Providence, RI), 369-398 · Zbl 1065.18007
[36] Loday, J. L.; Ronco, M. O., On the structure of cofree Hopf algebras, J. Reine Angew. Math., 592, 123-155 (2006) · Zbl 1096.16019
[37] Manchon, D.; Zhang, Y. Y., pre-Lie family algebras
[38] Moerdijk, I., On the Connes-Kreimer Construction of Hopf Algebras, Homotopy Methods in Algebraic Topology, Contemp. Math., vol. 271, 311-321 (2001), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0987.16032
[39] Nijenhuis, A., \( X_{n - 1}\)-forming sets of eigenvectors, Indag. Math., 13, 200-212 (1951) · Zbl 0042.16001
[40] Ogievetsky, O.; Popov, T., R-matrices in rime, Adv. Theor. Math. Phys., 14, 439-505 (2010) · Zbl 1208.81118
[41] Peirce, B., Linear associative algebra, Am. J. Math., 4, 97-229 (1881)
[42] Peng, X. S.; Zhang, Y.; Gao, X.; Luo, Y. F., Left counital Hopf algebras on bi-decorated planar rooted forests and Rota-Baxter systems, Bull. Belg. Math. Soc. Simon Stevin, 27, 219-243 (2020) · Zbl 1458.16042
[43] Pierce, R. S., Associative Algebras (1982), Springer-Verlag: Springer-Verlag New York-Berlin · Zbl 0497.16001
[44] Rota, G. C., Baxter Operators, an Introduction, Gian-Carlo Rota on Combinatorics, Contemp. Mathematicians, 504-512 (1995), Birkhäuser Boston: Birkhäuser Boston Boston, MA · Zbl 0841.01031
[45] Study, E., Über systeme complexer Zahlen und ihre Anwendung in der Theorie der Transformationsgruppen, Monatshefte Math. Phys., 1, 283-354 (1890) · JFM 22.0387.02
[46] Uchino, K., Twisting on associative algebras and Rota-Baxter type operators, J. Noncommut. Geom., 4, 349-379 (2010) · Zbl 1248.16027
[47] Vallette, B., Homology of generalized partition posets, J. Pure Appl. Algebra, 208, 699-725 (2007) · Zbl 1109.18002
[48] Zhang, T. J.; Gao, X.; Guo, L., Hopf algebras of rooted forests, cocyles, and free Rota-Baxter algebras, J. Math. Phys., 57 (2016), 16pp. · Zbl 1351.81076
[49] Zhang, Y.; Chen, D.; Gao, X.; Luo, Y. F., Weighted infinitesimal unitary bialgebras on rooted forests and weighted cocycles, Pac. J. Math., 302, 741-766 (2019) · Zbl 1435.16005
[50] Zhang, Y.; Gao, X., Hopf algebras of planar binary trees: an operated algebra approach, J. Algebraic Comb., 51, 567-588 (2020) · Zbl 1442.16033
[51] Zhang, Y.; Gao, X.; Guo, L., Matching Rota-Baxter algebras, matching dendriform algebras and matching pre-Lie algebras, J. Algebra, 552, 134-170 (2020) · Zbl 1444.16058
[52] Zhang, Y.; Gao, X.; Luo, Y. F., Weighted infinitesimal unitary bialgebras on rooted forests, symmetric cocycles and pre-Lie algebras, J. Algebraic Comb. (2020)
[53] Zhang, Y.; Zheng, J. W.; Luo, Y. F., Weighted infinitesimal unitary bialgebras, pre-Lie, matrix algebras and polynomial algebras, Commun. Algebra, 47, 5164-5181 (2019) · Zbl 1436.16043
[54] Zhang, Y. Y.; Gao, X.; Manchon, D., Free (tri)dendriform family algebras, J. Algebra, 547, 456-493 (2020) · Zbl 1435.16012
[55] Zheng, S. H.; Guo, L., Left counital Hopf algebra structures on free commutative Nijenhuis algebras, Sci. Sin., Math., 50 (2020) · Zbl 1499.16079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.