×

Hopf algebras of planar binary trees: an operated algebra approach. (English) Zbl 1442.16033

A new viewpoint is given on the Loday-Ronco Hopf algebra of planar binary trees \(H_{LR}\): in a parallel with the noncommutative Connes-Kreimer Hopf algebra of planar rooted trees which can be seen as a free operated algebra, it is seen as a free \(\vee\)-algebra: a \(\vee\)-algebra is a pair \((A,\vee)\) where \(A\) is an algebra and \(\vee\) is a bilinear (non necessarily associative) product on \(A\) such that for any \(x,x',y,y'\in A\), \[ (x\vee x')\cdot (y\vee y')=x\vee (x'\cdot (y\vee y'))+((x\vee x')\cdot y)\vee y'. \] Adding a cocycle condition, one recovers the Loday-Ronco coproduct, together with a universal property for the Hopf algebra \(H_{LR}\) in the category of cocycle \(\vee\)-bialgebras. Similar results are also obtained for decorated planar binary trees.
This paper also contains a description of the Loday-Ronco coproduct in terms of admissible cuts, comparable to the combinatorial description of the Connes-Kreimer coproduct on (planar) rooted trees.

MSC:

16T05 Hopf algebras and their applications
08B20 Free algebras
16T10 Bialgebras
16T30 Connections of Hopf algebras with combinatorics

References:

[1] Abe, E., Hopf algebras. Translated from the Japanese by Hisae Kinoshita and Hiroko Tanaka. Cambridge Tracts in Mathematics (1980), Cambridge-New York: Cambridge University Press, Cambridge-New York · Zbl 0476.16008
[2] Aguiar, M.; Sottile, F., Structure of the Loday-Ronco Hopf algebra of trees, J. Algebra, 295, 473-511 (2006) · Zbl 1099.16015
[3] Bokut, LA; Chen, Y.; Qiu, J., Gröbner-Shirshov bases for associative algebras with multiple operators and free Rota-Baxter algebras, J. Pure Appl. Algebra, 214, 89-110 (2010) · Zbl 1213.16014
[4] Brouder, C.; Frabetti, A., QED Hopf algebras on planar binary trees, J. Algebra, 267, 298-322 (2003) · Zbl 1056.16026
[5] Brouder, C.; Frabetti, A.; Menous, F., Combinatorial Hopf algebras from renormalization, J. Algebraic Combin., 32, 557-578 (2010) · Zbl 1211.81085
[6] Chapoton, F., A Hopf operad of forests of binary trees and related finite-dimensional algebras, J. Algebraic Combin., 20, 311-330 (2004) · Zbl 1068.18009
[7] Chapoton, F., Operads and algebraic combinatorics of trees, Sém. Lothar. Combin., 58, 2 (2008) · Zbl 1207.05229
[8] Chapoton, F.; Frabetti, A.; Ebrahimi-Fard, K.; Marcolli, M.; van Suijlekom, WD, From Quantum Electrodynamics to Posets of Planar Binary Trees, Combinatorics and Physics (2011), Providence, RI: American Mathematical Society, Providence, RI
[9] Chapoton, F.; Livernet, M., Pre-Lie algebras and the rooted trees operad, Int. Math. Res. Not. IMRN, 8, 395-408 (2001) · Zbl 1053.17001
[10] Connes, A.; Kreimer, D., Hopf algebras, renormalization and non-commutative geometry, Comm. Math. Phys., 199, 1, 203-242 (1998) · Zbl 0932.16038
[11] Connes, A.; Kreimer, D., Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem, Comm. Math. Phys., 210, 249-273 (2000) · Zbl 1032.81026
[12] Ebrahimi-Fard, K.; Guo, L.; Kreimer, D., Spitzer’s identity and the algebraic Birkhoff decomposition in pQFT, J. Phys. A: Math. Gen., 37, 11037-11052 (2004) · Zbl 1062.81113
[13] Foissy, L., Les algèbres de Hopf des arbres enracinés décorés. I, (French) [Hopf algebras of decorated rooted trees, I], Bull. Sci. Math., 126, 3, 193-239 (2002) · Zbl 1013.16026
[14] Foissy, L., Les algèbres de Hopf des arbres enracinés décorés. II, (French) [Hopf algebras of decorated rooted trees, II], Bull. Sci. Math., 126, 4, 249-288 (2002) · Zbl 1013.16027
[15] Foissy, L.: Introduction to Hopf algebra of rooted trees (2013). http://loic.foissy.free.fr/pageperso/p11.pdf
[16] Foissy, L., Classification of systems of Dyson-Schwinger equations of the Hopf algebra of decorated rooted trees, Adv. Math., 224, 2094-2150 (2010) · Zbl 1234.16024
[17] Gao, X.; Guo, L., Rota’s Classification Problem, rewriting systems and Gröbner-Shirshov bases, J. Algebra, 470, 219-253 (2017) · Zbl 1423.16047
[18] Grossman, R.; Larson, RG, Hopf-algebraic structure of families of trees, J. Algebra, 126, 184-210 (1989) · Zbl 0717.16029
[19] Guo, L., Operated semigroups, Motzkin paths and rooted trees, J. Algebraic Combin., 29, 35-62 (2009) · Zbl 1227.05271
[20] Guo, L., An Introduction to Rota-Baxter Algebra (2012), Somerville: International Press, Somerville · Zbl 1271.16001
[21] Guo, L.; Paycha, S.; Zhang, B., Algebraic Birkhoff factorization and the Euler-Maclaurin formula on cones, Duke Math. J., 166, 537-571 (2017) · Zbl 1373.52020
[22] Holtkamp, R., Comparison of Hopf algebras on trees, Arch. Math. (Basel), 80, 368-383 (2003) · Zbl 1056.16030
[23] Hohlweg, C.; Lange, C.; Thomas, H., Permutahedra and generalized associahedra, Adv. Math., 226, 608-640 (2011) · Zbl 1233.20035
[24] Kreimer, D., On the Hopf algebra structure of perturbative quantum field theories, Adv. Theor. Math. Phys., 2, 303-334 (1998) · Zbl 1041.81087
[25] Kreimer, D.; Panzer, E.; Schneider, C.; Blümlein, J., Renormalization and Mellin transforms, Computer Algebra in Quantum Field Theory, 195-223 (2013), Vienna: Springer, Vienna · Zbl 1308.81137
[26] Kurosh, AG, Free sums of multiple operator algebras, Sib. Math. J., 1, 62-70 (1960) · Zbl 0096.25304
[27] Loday, J-L; Ronco, MO, Hopf algebra of the planar binary trees, Adv. Math., 139, 293-309 (1998) · Zbl 0926.16032
[28] Loday, J-L, une version non commutative des algèbre de Lie: les algèbres de Leibniz, Enseign. Math., 39, 269-293 (1993) · Zbl 0806.55009
[29] Loday, J-L; Loday, J-L; Frabetti, A.; Chapoton, F.; Goichot, F., Dialgebras, Dialgebras and Related Operads, 7-66 (2001), Berlin: Springer, Berlin · Zbl 0999.17002
[30] Loday, J-L, Realization of the Stasheff polytope, Arch. Math. (Basel), 83, 267-278 (2004) · Zbl 1059.52017
[31] Loday, J-L; Vallette, B., Algebraic operads (2012), Heidelberg: Springer, Heidelberg · Zbl 1260.18001
[32] Manchon, D.: Hopf algebras, from basics to applications to renormalization. Comptes-rendus des Rencontres mathematiques de Glanon 2001 (2003). arXiv:math.QA/0408405
[33] Manchon, D.; Hazewinkel, M., Hopf algebras in renormalisation, Handbook of Algebra, 365-427 (2008), Amsterdam: Elsevier/North-Holland, Amsterdam · Zbl 1215.81071
[34] Moerdijk, I., On the Connes-Kreimer construction of Hopf algebras, Contemp. Math., 271, 311-321 (2001) · Zbl 0987.16032
[35] Ronco, M., Eulerian idempotents and Milnor-Moore theorem for certain non-cocommutative Hopf algebras, J. Algebra, 254, 152-172 (2002) · Zbl 1017.16033
[36] Stanley, R. P.: Enumerative Combinatorics. Cambridge Studies in Advanced Mathematics, vol. 1, no. 49. Cambridge University Press, Cambridge (1997) · Zbl 0889.05001
[37] Sweedler, ME; Otto, F., Hopf Algebras (1969), New York: W. A. Benjamin Inc., New York · Zbl 0194.32901
[38] Zhang, TJ; Gao, X.; Guo, L., Hopf algebras of rooted forests, cocycles, and free Rota-Baxter algebras, J. Math. Phys., 57, 101701 (2016) · Zbl 1351.81076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.