×

Nijenhuis algebras, NS algebras, and N-dendriform algebras. (English) Zbl 1262.16040

A Nijenhuis algebra is a nonunitary associative algebra \(N\) with a linear endomorphism \(P\) satisfying \(P(x)P(y)=P(P(x)y)+P(xP(y))-P^2(xy)\) for all \(x,y\in N\).
The paper under review studies relationship between associative Nijenhuis algebras and NS algebras. The paper starts with a construction of a free Nijenhuis algebra over an algebra which is then applied to construct the universal enveloping Nijenhuis algebra of an NS algebra. At the end of the paper the authors determine the N-dendriform algebra compatible with the Nijenhuis algebra.

MSC:

16W10 Rings with involution; Lie, Jordan and other nonassociative structures
17A30 Nonassociative algebras satisfying other identities
16S10 Associative rings determined by universal properties (free algebras, coproducts, adjunction of inverses, etc.)
16S30 Universal enveloping algebras of Lie algebras
16T25 Yang-Baxter equations

References:

[1] Aguiar M. On the associative analog of Lie bialgebras. J Algebra, 2001, 244: 492–532 · Zbl 0991.16033 · doi:10.1006/jabr.2001.8877
[2] Baxter G. An analytic problem whose solution follows from a simple algebraic identity. Pacific J Math, 1960, 10: 731–742 · Zbl 0095.12705 · doi:10.2140/pjm.1960.10.731
[3] Bokut L A, Chen Y, Qiu J. Gröbner-Shirshov bases for associative algebras with multiple operators and free Rota-Baxter algebras. J Pure Appl Algebra, 2010, 214: 89–110 · Zbl 1213.16014 · doi:10.1016/j.jpaa.2009.05.005
[4] Cariñena J, Grabowski J, Marmo G. Quantum bi-Hamiltonian systems. Internat J Modern Phys A, 2000, 15: 4797–4810 · Zbl 1002.81026 · doi:10.1142/S0217751X00001956
[5] Connes A, Kreimer D. Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem. Comm Math Phys, 2000, 210: 249–273 · Zbl 1032.81026 · doi:10.1007/s002200050779
[6] Ebrahimi-Fard K. Loday-type algebras and the Rota-Baxter relation. Lett Math Phys, 2002, 61: 139–147 · Zbl 1035.17001 · doi:10.1023/A:1020712215075
[7] Ebrahimi-Fard K. On the associative Nijenhuis relation. Electron J Combin, 2004, 11(1): R38 · Zbl 1074.17001
[8] Ebramihi-Fard K, Guo L. Rota-Baxter algebras and dendriform algebras. J Pure Appl Algebra, 2008, 212: 320–339 · Zbl 1132.16032 · doi:10.1016/j.jpaa.2007.05.025
[9] Ebramihi-Fard K, Guo L. Free Rota-Baxter algebras and rooted trees. J Algebra Appl, 2008, 7: 167–194 · Zbl 1154.16026 · doi:10.1142/S0219498808002746
[10] Ebrahimi-Fard K, Guo L, Kreimer D. Spitzer’s identity and the algebraic Birkhoff decomposition in pQFT. J Phys A: Math Gen, 2004, 37: 11037–11052 · Zbl 1062.81113 · doi:10.1088/0305-4470/37/45/020
[11] Ebrahimi-Fard K, Guo L, Manchon D. Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion. Comm Math Phys, 2006, 267: 821–845 · Zbl 1188.17020 · doi:10.1007/s00220-006-0080-7
[12] Ebrahimi-Fard K, Leroux P. Generalized shuffles related to Nijenhuis and TD-algebras. Comm Algebra, 2009, 37: 3065–3094 · Zbl 1189.17006
[13] Frölicher A, Nijenhuis A. Theory of vector valued differential forms. Part I. Indag Math, 1956, 18: 338–360 · Zbl 0079.37502
[14] Golubchik I Z, Sokolov V V. One more type of classical Yang-Baxter equation. Funct Anal Appl, 2000, 34: 296–298 · Zbl 1156.17306 · doi:10.1023/A:1004113508705
[15] Golubchik I Z, Sokolov V V. Generalized operator Yang-Baxter equations, integrable ODEs and nonassociative algebras. J Nonlinear Math Phys, 2000, 7: 184–197 · Zbl 1119.37317 · doi:10.2991/jnmp.2000.7.2.5
[16] Guo L. An Introduction to Rota-Baxter Algebras. Beijing: Higher Education Press and Boston: International Press, 2012 · Zbl 1271.16001
[17] Guo L, Keigher W. Baxter algebras and shuffle products. Adv Math, 2000, 150: 117–149 · Zbl 0947.16013 · doi:10.1006/aima.1999.1858
[18] Guo L, Sit W, Zhang R. On Rota’s problem for linear operators in associative algebras. Proc ISSAC, 2011, 147–154 · Zbl 1323.68601
[19] Guo L, Sit W, Zhang R. Differential type operators and Gröbner-Shirshov bases. J Symbolic Comput (to appear) · Zbl 1290.16021
[20] Kosmann-Schwarzbach Y, Magri F. Poisson-Nijenhuis structures. Ann Inst Henri Poincaré, 1990, 53: 35–81 · Zbl 0707.58048
[21] Leroux P. Construction of Nijenhuis operators and dendriform trialgebras. Int J Math Math Sci, 2004, 40–52: 2595–2615 · Zbl 1116.17002 · doi:10.1155/S0161171204402117
[22] Loday J-L. Dialgebras. In: Dialgebras and Related Operads. Lecture Notes in Math, Vol 1763. 2001, 7–66
[23] Loday J -L, Ronco M. Trialgebras and families of polytopes. In: Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory. Contemp Math, 346. 2004, 369–398 · Zbl 1065.18007
[24] Loday J L, Vallette B. Algebraic Operads. Grundlehren Math Wiss, 346. Heidelberg: Springer, 2012 · Zbl 1260.18001
[25] Nijenhuis A. X n-forming sets of eigenvectors. Indag Math, 1951, 13: 200–212 · Zbl 0042.16001
[26] Uchino K. Twisting on associative algebras and Rota-Baxter type operators. J Noncommut Geom, 2010, 4: 349–379 · Zbl 1248.16027 · doi:10.4171/JNCG/59
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.