×

Weighted infinitesimal unitary bialgebras on rooted forests and weighted cocycles. (English) Zbl 1435.16005

A \(\lambda\)-infinitesimal bialgebra is both an algebra an a coalgebra, with the compatibility \[ \Delta(ab)=a\Delta(b)+\Delta(b)+\lambda (a\otimes b). \] For \(\lambda=0\), this gives infinitesimal bialgebras in the sense of S. A. Joni and G. C. Rota [Stud. Appl. Math. 61, 93–139 (1979; Zbl 0471.05020)] and M. Aguiar [Contemp. Math. 267, 1–29 (2000; Zbl 0982.16028)]; for \(\lambda=1\), this gives infinitesimal bialgebras in the sense of J.-L. Loday and M. O. Ronco [Adv. Math. 139, No. 2, 293–309 (1998; Zbl 0926.16032)].
Generalizing A. Connes and D. Kreimer’s construction on rooted trees [Commun. Math. Phys. 199, No. 1, 203–242 (1998; Zbl 0932.16038)] and the reviewer’s [Bull. Sci. Math. 126, No. 3, 193–239 (2002; Zbl 1013.16026); ibid. 126, No. 4, 249–288 (2002; Zbl 1013.16027)] and R. Holtkamp’s non commutative version [Arch. Math. 80, No. 4, 368–383 (2003; Zbl 1056.16030)], the algebra of decorated plane rooted trees is given a new coproduct \(\Delta_\epsilon\), making it a \(\lambda\)-infinitesimal bialgebra. For this coproduct, the grafting operators are 1-cocycles for the Cartier-Quillen cohomology (up to the weight \(\lambda\)), as in the Connes-Kreimer case. It is proved that these infinitesimal bialgebras are the free objects in the category of infinitesimal bialgebra given a family of 1-cocycles, generalizing the universal property of the non commutative Connes-Kreimer Hopf algebra.

MSC:

16S10 Associative rings determined by universal properties (free algebras, coproducts, adjunction of inverses, etc.)
16T10 Bialgebras
16T30 Connections of Hopf algebras with combinatorics
05C05 Trees

References:

[1] 10.1090/conm/267/04262 · doi:10.1090/conm/267/04262
[2] 10.1006/jabr.2001.8877 · Zbl 0991.16033 · doi:10.1006/jabr.2001.8877
[3] ; Aguiar, Hopf algebras. Lecture Notes in Pure and Appl. Math., 237, 1 (2004) · Zbl 0982.16028
[4] 10.2140/pjm.2012.256.257 · Zbl 1285.16031 · doi:10.2140/pjm.2012.256.257
[5] 10.1142/9789814340458_0002 · Zbl 1300.16036 · doi:10.1142/9789814340458_0002
[6] 10.1016/j.jpaa.2009.05.005 · Zbl 1213.16014 · doi:10.1016/j.jpaa.2009.05.005
[7] 10.1016/S0021-8693(03)00331-4 · Zbl 1056.16026 · doi:10.1016/S0021-8693(03)00331-4
[8] 10.1007/s10801-010-0227-7 · Zbl 1211.81085 · doi:10.1007/s10801-010-0227-7
[9] 10.1007/s002200050499 · Zbl 0932.16038 · doi:10.1007/s002200050499
[10] 10.1007/s002200050779 · Zbl 1032.81026 · doi:10.1007/s002200050779
[11] 10.1016/S0007-4497(02)01108-9 · Zbl 1013.16026 · doi:10.1016/S0007-4497(02)01108-9
[12] 10.1016/S0007-4497(02)01113-2 · Zbl 1013.16027 · doi:10.1016/S0007-4497(02)01113-2
[13] 10.1007/s10801-008-0163-y · Zbl 1192.16033 · doi:10.1007/s10801-008-0163-y
[14] 10.1093/imrn/rnp132 · Zbl 1226.18012 · doi:10.1093/imrn/rnp132
[15] 10.1016/j.jalgebra.2016.09.006 · Zbl 1423.16047 · doi:10.1016/j.jalgebra.2016.09.006
[16] 10.1007/s10801-018-0830-6 · Zbl 1437.16030 · doi:10.1007/s10801-018-0830-6
[17] 10.1016/0021-8693(89)90328-1 · Zbl 0717.16029 · doi:10.1016/0021-8693(89)90328-1
[18] 10.1007/s10801-007-0119-7 · Zbl 1227.05271 · doi:10.1007/s10801-007-0119-7
[19] ; Guo, An introduction to Rota-Baxter algebra. Surveys of Modern Math., 4 (2012) · Zbl 1271.16001
[20] 10.1016/j.jalgebra.2008.02.003 · Zbl 1165.11071 · doi:10.1016/j.jalgebra.2008.02.003
[21] ; Guo, Noncommutative geometry, arithmetic, and related topics, 183 (2011)
[22] 10.1016/j.jsc.2012.05.014 · Zbl 1290.16021 · doi:10.1016/j.jsc.2012.05.014
[23] 10.1215/00127094-3715303 · Zbl 1373.52020 · doi:10.1215/00127094-3715303
[24] 10.1090/S0002-9947-03-03317-8 · Zbl 1048.16023 · doi:10.1090/S0002-9947-03-03317-8
[25] 10.1007/s00013-003-0796-y · Zbl 1056.16030 · doi:10.1007/s00013-003-0796-y
[26] 10.1002/sapm197961293 · Zbl 0471.05020 · doi:10.1002/sapm197961293
[27] 10.4310/ATMP.1998.v2.n2.a4 · Zbl 1041.81087 · doi:10.4310/ATMP.1998.v2.n2.a4
[28] 10.1007/978-3-7091-1616-6_8 · Zbl 1308.81137 · doi:10.1007/978-3-7091-1616-6_8
[29] ; Kurosh, Sibirsk. Mat. Zh., 1, 62 (1960)
[30] 10.1007/978-3-662-21739-9 · doi:10.1007/978-3-662-21739-9
[31] 10.1006/aima.1998.1759 · Zbl 0926.16032 · doi:10.1006/aima.1998.1759
[32] 10.1515/CRELLE.2006.025 · Zbl 1096.16019 · doi:10.1515/CRELLE.2006.025
[33] 10.1090/conm/271/04360 · doi:10.1090/conm/271/04360
[34] 10.4310/ATMP.2010.v14.n2.a3 · Zbl 1208.81118 · doi:10.4310/ATMP.2010.v14.n2.a3
[35] 10.1007/978-1-4615-9763-6 · doi:10.1007/978-1-4615-9763-6
[36] 10.1080/00927872.2013.766796 · Zbl 1301.16035 · doi:10.1080/00927872.2013.766796
[37] 10.1007/s10801-019-00885-8 · Zbl 1442.16033 · doi:10.1007/s10801-019-00885-8
[38] 10.1063/1.4963727 · Zbl 1351.81076 · doi:10.1063/1.4963727
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.