×

The asymptotic stability of phase separation states for compressible immiscible two-phase flow in 3D. (English) Zbl 1524.76489

Summary: This paper is concerned with a diffuse interface model called Navier-Stokes/Cahn-Hilliard system. This model is usually used to describe the motion of immiscible two-phase flows with a diffusion interface. For the periodic boundary value problem of this system in torus \(\mathbb{T}^3\), we prove that there exists a global unique strong solution near the phase separation state, which means that no vacuum, shock wave, mass concentration, interface collision or rupture will be developed in finite time. Furthermore, we establish the large time behavior of the global strong solution of this system. In particular, we find that the phase field decays algebraically to the phase separation state.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
35B40 Asymptotic behavior of solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs
35L65 Hyperbolic conservation laws
76N06 Compressible Navier-Stokes equations
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics

References:

[1] Abels, H.; Feireisl, E., On a diffuse interface model for a two-phase flow of compressible viscous fluids, Indiana Univ Math J, 57, 2, 569-578 (2008) · Zbl 1144.35041 · doi:10.1512/iumj.2008.57.3391
[2] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system, I. Interfacial free energy, J Chem Phys, 28, 258-267 (1958) · Zbl 1431.35066 · doi:10.1063/1.1744102
[3] Chen, M.; Guo, X., Global large solutions for a coupled compressible Navier-Stokes/Allen-Cahn system with initial vacuum, Nonlinear Analysis: Real World Applications, 37, 350-373 (2017) · Zbl 1375.35364
[4] Chen, Y.; He, Q.; Mei, M.; Shi, X., Asymptotic stability of solutions for 1-D compressible Navier-Stokes-Cahn-Hilliard system, J Math Anal Appl, 467, 185-206 (2018) · Zbl 1397.35026 · doi:10.1016/j.jmaa.2018.06.075
[5] Chen, Z.; Li, C., An extended discrete Hardy-Littlewood-Sobolev inequality, Discrete and Continuous Dynamical Systems, 34, 5, 1951-1959 (2014) · Zbl 1277.35015 · doi:10.3934/dcds.2014.34.1951
[6] Chen, S.; Wen, H.; Zhu, C., Golbal existence of weak solution to compressible Navier-Stokes/Allen-Cahn system in three dimensions, J Math Anal Appl, 477, 1265-1295 (2019) · Zbl 1421.35270 · doi:10.1016/j.jmaa.2019.05.012
[7] Ding, S.; Li, Y.; Luo, W., Global solutions for a coupled compressible Navier-Stokes/Allen-Cahn system in 1D, J Math Fluid Mech, 15, 335-360 (2013) · Zbl 1284.35307 · doi:10.1007/s00021-012-0104-3
[8] Ding, S.; Li, Y.; Tang, Y., Strong solutions to 1D compressible Navier-Stokes/Allen-Cahn system with free boundary, Math Methods Appl Sci, 42, 4780-4794 (2019) · Zbl 1428.35356 · doi:10.1002/mma.5692
[9] Feireis, E.; Petzeltová, H.; Rocca, E.; Schimperna, G., Analysis of a phase-field model for two-phase compressible fluids, Math Models Meth Appl Sci, 20, 7, 1129-1160 (2010) · Zbl 1200.76155 · doi:10.1142/S0218202510004544
[10] Freistühler, H.; Kotschote, M., Phase-field and Korteweg-type models for the time-dependent flow of compressible two-phase fluids, Arch Rational Mech Anal, 224, 1-20 (2017) · Zbl 1366.35130 · doi:10.1007/s00205-016-1065-0
[11] Freistühler, H.; Kotschote, M., The Blesgen and Lowengrub-Truskinovsky descriptions of two-phase compressible fluid flow: interstitial working and a reduction to Korteweg theory, Quarterly of Applied Mathematics, 77, 3, 489-496 (2019) · Zbl 1421.35275 · doi:10.1090/qam/1504
[12] Gao, J.; Tao, Q.; Yao, Z., Long-time behavior of solution for the compressible nematic liquid crystal flows in ℝ^3, J Differential Equations, 261, 2334-2383 (2016) · Zbl 1347.35200 · doi:10.1016/j.jde.2016.04.033
[13] Guo, Y.; Wang, Y., Decay of dissipative equations and negative Sobolev spaces, Commun P D E, 37, 2165-2208 (2012) · Zbl 1258.35157 · doi:10.1080/03605302.2012.696296
[14] He, Q.; Liu, C.; Shi, X., Numerical study of phase transition in van der Waals fluid, Discret. Contin Dyn Syst Ser B, 23, 4519-4540 (2018) · Zbl 1404.76263
[15] Heida, M.; Málek, J.; Rajagopal, K. R., On the development and gendralizations of Cahn-Hilliard equations within a thermodynamic framework, Z Angew Math Phys, 63, 1, 145-169 (2012) · Zbl 1295.76002 · doi:10.1007/s00033-011-0139-y
[16] Huang, G.; Li, C.; Yin, X., Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequalit, Discret Contin Dyn Syst, 35, 3, 935-942 (2015) · Zbl 1304.26020 · doi:10.3934/dcds.2015.35.935
[17] Klainerman, S.; Majda, A., Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm Pure Appl Math, 34, 481-524 (1981) · Zbl 0476.76068 · doi:10.1002/cpa.3160340405
[18] Kotschote, M., Strong solutions of the Navier-Stokes equations for a compressible fluid of Allen-Cahn type, Arch Rational Mech Anal, 206, 489-514 (2012) · Zbl 1257.35143 · doi:10.1007/s00205-012-0538-z
[19] Kotschote, M., Mixing rules and the Navier-Stokes-Cahn-Hilliard equations for compressible heat-conductive fluids, Bull Braz Math Soc, 47, 2, 457-471 (2016) · Zbl 1354.76039 · doi:10.1007/s00574-016-0162-x
[20] Kotschote, M.; Zacher, R., Strong solutions in the dynamical theory of compressible fluid mixtures, Math Models Meth Appl Sciences, 25, 7, 1217-1256 (2015) · Zbl 1329.76060 · doi:10.1142/S0218202515500311
[21] Liu, C.; Shen, J., A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Phys D, 179, 3-4, 211-228 (2003) · Zbl 1092.76069 · doi:10.1016/S0167-2789(03)00030-7
[22] Luo, T.; Yin, H., Stability of the rarefaction wave for a coupled compressible Navier-Stokes/Allen-Cahn system, Math Methods Appl Sci, 41, 12, 4724-4736 (2018) · Zbl 1397.35021 · doi:10.1002/mma.4925
[23] Nirenberg, L., On elliptic partial differential equations, Ann Scuola Norm Sup Pisa, 13, 115-162 (1959) · Zbl 0088.07601
[24] Shi, X.; Yong, Y.; Zhang, Y., Vanishing viscosity for non-isentropic gas dynamics with interacting shocks, Acta Mathematica Scientia, 36B, 6, 1699-1720 (2016) · Zbl 1374.35262 · doi:10.1016/S0252-9602(16)30100-X
[25] Stein, E. M., Singular Integrals and Differentiability Properties of Functions (1970), Princeton: Princeton University Press, Princeton · Zbl 0207.13501
[26] Tan, Z.; Zhang, R., Optimal decay rates of the compressible fluid models of Korteweg type, Z Angew Math Phys, 65, 279-300 (2014) · Zbl 1292.35052 · doi:10.1007/s00033-013-0331-3
[27] Wang, Y., Decay of the Navier-Stokes-Poisson equations, J Differential Equations, 253, 273-297 (2012) · Zbl 1239.35117 · doi:10.1016/j.jde.2012.03.006
[28] Yin, H.; Zhu, C., Asymptotic stability of superposition of stationary solutions and rarefaction waves for 1D Navier-Stokes/Allen-Cahn system, J Differential Equations, 266, 7291-7326 (2019) · Zbl 1411.35034 · doi:10.1016/j.jde.2018.11.034
[29] Yin, J., On the Cahn-Hilliard equation with nonlinear principal part, Journal of Partial Differential Equations, 7, 1, 77-96 (1994) · Zbl 0823.35036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.