×

Strong solutions to 1D compressible Navier-Stokes/Allen-Cahn system with free boundary. (English) Zbl 1428.35356

Summary: This paper is concerned with a diffuse interface model for two-phase flow of compressible fluids with a type of free boundary. We establish the existence and uniqueness of global strong solutions of a coupled Navier-Stokes/Allen-Cahn system in 1D.

MSC:

35Q35 PDEs in connection with fluid mechanics
35D35 Strong solutions to PDEs
35R35 Free boundary problems for PDEs
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76T99 Multiphase and multicomponent flows
Full Text: DOI

References:

[1] AndersonDM, McFaddenGB, WheelerAA. Diffuse‐interface methods in fluid mechanics. Ann Rev Fluid Mech. 1998;30:139‐165. · Zbl 1398.76051
[2] GurtiME, PolignoneD, VinalsJ. Two‐phase binary fluids and immiscible fluids described by an order parameter. Math Models Methods Appl Sci. 1996;6(6):815‐831. · Zbl 0857.76008
[3] LowengrubJ, TruskinovskyL. Quasi‐incompressible CahnĊHilliard fluids and topological transitions. R Soc Lond Proc Ser A. 1998;454:2617‐2654. · Zbl 0927.76007
[4] LiuC, ShenJ, YangXF. Decoupled energy stable schemes for a phase‐field model of two‐phase incompressible flows with variable density. J Sci Comput. 2015;62:601‐622. · Zbl 1326.76064
[5] AbelsH. On a diffuse interface model for two‐phase flows of viscous, incompressible fluids with matched densities. Arch Ration Mech Anal. 2009;194(2):463‐506. · Zbl 1254.76158
[6] AbelsH, DieningL, TerasawaY. Existence of weak solutions for a diffuse interface model of non‐Newtonian two‐phase flows. Nonlinear Anal Real World Appl. 2014;15:149‐157. · Zbl 1297.35177
[7] AbelsH, RögerM. Existence of weak solutions for a non‐classical sharp interface model for a two‐phase flow of viscous, incompressible fluids. Ann I H Poincaré,‐AN. 2009;26(6):2403‐2424. · Zbl 1181.35343
[8] BoyerF. Mathematical study of multi‐phase flow under shear through order parameter formulation. Asymptot Anal. 1999;20(2):175‐212. · Zbl 0937.35123
[9] GalCG, GrasselliM. Asymptotic behavior of a Cahn‐Hilliard‐Navier‐Stokes system in 2D. Ann I H Poincaré‐AN. 2010;27:401‐436. · Zbl 1184.35055
[10] GalCG, GrasselliM. Instability of two‐phase flows: a lower bound on the dimension of global attractor of the Cahn‐Hilliard‐Navier‐Stokes system. Physica D. 2011;240:629‐635. · Zbl 1214.37055
[11] AbelsH, FeireislE. On a diffuse interface model for a two‐phase flow of compressible viscous fluids. Indiana Univ Math J. 2008;57(2):659‐698. · Zbl 1144.35041
[12] KotschoteM, ZacherR. Strong solutions in the dynamical theory of compressible fluid mixtures. Math Models Methods Appl Sci. 2015;25(7):1217‐1256. · Zbl 1329.76060
[13] AbelsH. Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities. Commun Math Phys. 2009;289(1):45‐73. · Zbl 1165.76050
[14] AbelsH, BreitD. Weak solutions for a non‐Newtonian diffuse interface model with different densities. Nonlinearity. 2016;29(1):3426‐3453. · Zbl 1354.35084
[15] AbelsH, DepneryD, GarckeH. Existence of weak solutions for a diffuse interface model for two‐phase flows of incompressible fluids with different densities. J Math Fluid Mech. 2013;15(3):453‐480. · Zbl 1273.76421
[16] AbelsH, DepneryD, GarckeH. On an incompressible Navier‐Stokes/Cahn‐Hilliard system with degenerate mobility. Ann Inst H Poincaré Anal Non Linéaire. 2013;30(6):1175‐1190. · Zbl 1347.76052
[17] AbelsH, GarckeH, GrünG. Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two‐phase flows with different densities. Math Models Methods Appl Sci. 2012;22(3):1150013, 40 pp. · Zbl 1242.76342
[18] BoyerF. Nonhomogeneous Cahn‐Hilliard fluids. Ann Inst H Poincaré Anal Non Linéaire. 2001;18(2):225‐259. · Zbl 1037.76062
[19] BlesgenT. A generalizaion of the Navier‐Stokes equations to two‐phase flow. J Phys D Appl Phys. 1999;32:1119‐1123.
[20] XuX, ZhaoL, LiuC. Axisymmetric solutions to coupled Navier‐Stokes/Allen‐Cahn equations. SIAM J Math Anal. 2010;41(6):2246‐2282. · Zbl 1203.35191
[21] ZhaoL, GuoB, HuangH. Vanishing viscosity limit for a coupled Navier‐Stokes/Allen‐Cahn system. J Math Anal Appl. 2011;384:232‐245. · Zbl 1231.35185
[22] GalCG, GrasselliM. Trajectory attractors for binary fluid mixtures in 3D. Chin Ann Math Series B. 2010;31(5):655‐678. · Zbl 1223.35079
[23] GalCG, GrasselliM. Longtime behavior for a model of homogeneous incompressible two‐ phase flows. Discrete Contin Dynam Systems Ser A. 2010;28(1):1‐39. · Zbl 1194.35056
[24] LiY, DingS, HuangM. Blow‐up criterion for an incompressible Navier‐Stokes/Allen���Cahn system with different densities. Discrete Contin Dynam Systems Ser B. 2016;21(5):1507‐1523. · Zbl 1346.76195
[25] LiY, HuangM. Strong solutions for an incompressible Navier‐Stokes/Allen‐Cahn system with different densities. Z Angew Math Phys. 2018;69(3):article id. 68, 18 pp. · Zbl 1394.35362
[26] JiangJ, LiY, LiuC. Strong solutions for an incompressible Navier‐Stokes/Allen‐Cahn system with different densities. Discrete Contin Dynam Systems. 2017;37(6):3243‐3284. · Zbl 1361.35129
[27] FeireislE, PetzeltováH, RoccaE, SchimpernaG. Analysis of a phase‐field model for two‐phase compressible fluids. Math Meth Appl Sci. 2008;31:1972‐1995.
[28] KotschoteM. Strong solutions of the Navier‐Stokes equations for a compressible fluid of Allen‐Cahn type. Arch Rational Mech Anal. 2012;206(2):489‐514. · Zbl 1257.35143
[29] DingS, LiY, LuoW. Global solutions for a coupled compressible Navier‐Stokes/Allen‐Cahn system in 1‐D. J Math Fluid Mech. 2013;15(2):335‐360. · Zbl 1284.35307
[30] ChenM, GuoX. Global large solutions for a coupled compressible Navier‐Stokes/Allen‐Cahn system with initial vacuum. Nonlinear Anal Real World Appl. 2017;37:350‐373. · Zbl 1375.35364
[31] KazhikhovAV. Sur la solubilité globale des problème monodimensionnelle aux valeurs initiales limitées pour les équations du gaz visqueux et calorifère. C R Acad Sci Paris Ser A. 1977;284:317‐320. · Zbl 0355.35071
[32] OkadaM. Free boundary value problems for the equation of one‐dimensional motion of compressible viscous fluids. Japan J Appl Math. 1987;4:219‐235. · Zbl 0636.76065
[33] OkadaM. Free boundary value problems for the equation of one‐dimensional motion of viscous gas. Japan J Appl Math. 1989;6:161‐177. · Zbl 0668.76081
[34] OkadaM, MakinoT. Free boundary problem for the equation of spherically symmetrical motion of viscous gas. Japan J Appl Math. 1993;10:219‐235. · Zbl 0783.76082
[35] LuoT, XinZP, YangT. Interface behavior of compressible Navier-Stokes equations with vacuum. SIAM J Math Anal. 2000;31:1175‐1191. · Zbl 0966.35098
[36] OkadaM, Matus̆u̇‐Nec̆asováS̆, MakinoT. Free boundary problem for the equation of one‐dimensional motion of compressible gas with density‐dependent viscosity. Ann Univ Ferrara Sez VII Sci Mat. 2002;48:1‐20. · Zbl 1027.76042
[37] XinZP. Blow‐up of smooth solutions to the compressible Navier-Stokes equations with compact density. Comm Pure Appl Math. 1998;351:229‐240. · Zbl 0937.35134
[38] DingS, HuangJ, XiaF. A free boundary problem for compressible hydrodynamic flow of liquid crystals in one dimension. J Differential Equations. 2013;255(11):3848‐3879. · Zbl 1452.76019
[39] LadyzenskajaO, SolonnikovV, UraltsevaN. Linear and quasilinear equations of parabolic type. Translations of Mathematical Monographs, Vol. 23. Providence: American Mathematical Society; 1968. · Zbl 0174.15403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.