×

Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review. (English) Zbl 1392.74074

Summary: The evolutionary structural optimization (ESO) method developed by Y. M. Xie and G. P. Steven [“A simple evolutionary procedure for structural optimization”, Comput. Struct. 49, No. 5, 885–896 (1993; doi:10.1016/0045-7949(93)90035-C)], an important branch of topology optimization, has undergone tremendous development over the past decades. Among all its variants, the convergent and mesh-independent bi-directional evolutionary structural optimization (BESO) method developed by X. Huang and Y. M. Xie [“Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method”, Finite Elem. Anal. Des. 43, No. 14, 1039–1049 (2007; doi:10.1016/j.finel.2007.06.006)] allowing both material removal and addition, has become a widely adopted design methodology for both academic research and engineering applications because of its efficiency and robustness. This paper intends to present a comprehensive review on the development of ESO-type methods, in particular the latest convergent and mesh-independent BESO method is highlighted. Recent applications of the BESO method to the design of advanced structures and materials are summarized. Compact Malab codes using the BESO method for benchmark structural and material microstructural designs are also provided.

MSC:

74P05 Compliance or weight optimization in solid mechanics
90C90 Applications of mathematical programming
90C59 Approximation methods and heuristics in mathematical programming
49Q10 Optimization of shapes other than minimal surfaces
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Allaire, G; Jouve, F; Toader, AM, A level-set method for shape optimization, CR Math, 334, 1125-1130, (2002) · Zbl 1115.49306
[2] Andreassen, E; Jensen, J, Topology optimization of periodic microstructures for enhanced dynamic properties of viscoelastic composite materials, Struct Multidiscip Optim, 49, 695-705, (2014) · doi:10.1007/s00158-013-1018-2
[3] Andreassen, E; Clausen, A; Schevenels, M; Lazarov, BS; Sigmund, O, Efficient topology optimization in Matlab using 88 lines of code, Struct Multidiscip Optim, 43, 1-16, (2011) · Zbl 1274.74310 · doi:10.1007/s00158-010-0594-7
[4] Ansola, R; Canales, J; Tárrago, JA, An efficient sensitivity computation strategy for the evolutionary structural optimization (ESO) of continuum structures subjected to self-weight loads, Finite Elem Anal Des, 42, 1220-1230, (2006) · doi:10.1016/j.finel.2006.06.001
[5] Barbero EJ (2010) Introduction to composite materials design. CRC Press, Boca Raton
[6] Bendsøe, M; Sigmund, O, Material interpolation schemes in topology optimization, Arch Appl Mech, 69, 635-654, (1999) · Zbl 0957.74037
[7] Bendsøe, MP, Optimal shape design as a material distribution problem, Struct Optim, 1, 193-202, (1989) · doi:10.1007/BF01650949
[8] Bendsøe, MP; Kikuchi, N, Generating optimal topologies in structural design using a homogenization method, Comput Methods Appl Mech Eng, 71, 197-224, (1988) · Zbl 0671.73065 · doi:10.1016/0045-7825(88)90086-2
[9] Bendsøe, MP; Sigmund, O, Material interpolation schemes in topology optimization, Arch Appl Mech, 69, 635-654, (1999) · Zbl 0957.74037 · doi:10.1007/s004190050248
[10] Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin · Zbl 1059.74001
[11] Bourdin, B; Chambolle, A, Design-dependent loads in topology optimization, ESAIM Control Optim Calc Var, 9, 19-48, (2003) · Zbl 1066.49029 · doi:10.1051/cocv:2002070
[12] Bruns, T; Tortorelli, D, An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms, Int J Numer Methods Eng, 57, 1413-1430, (2003) · Zbl 1062.74589 · doi:10.1002/nme.783
[13] Cadman, J; Zhou, S; Chen, Y; Li, Q, On design of multi-functional microstructural materials, J Mater Sci, 48, 51-66, (2013) · doi:10.1007/s10853-012-6643-4
[14] Challis, VJ; Roberts, AP; Wilkins, AH, Design of three dimensional isotropic microstructures for maximized stiffness and conductivity, Int J Solids Struct, 45, 4130-4146, (2008) · Zbl 1169.74527 · doi:10.1016/j.ijsolstr.2008.02.025
[15] Challis, VJ; Guest, JK; Grotowski, JF; Roberts, AP, Computationally generated cross-property bounds for stiffness and fluid permeability using topology optimization, Int J Solids Struct, 49, 3397-3408, (2012) · doi:10.1016/j.ijsolstr.2012.07.019
[16] Chen, W; Liu, S, Topology optimization of microstructures of viscoelastic damping materials for a prescribed shear modulus, Struct Multidiscip Optim, 50, 287-296, (2014) · doi:10.1007/s00158-014-1049-3
[17] Cheng, K; Olhoff, N, An investigation concerning optimal design of solid elastic plates, Int J Solids Struct, 17, 305-323, (1981) · Zbl 0457.73079 · doi:10.1016/0020-7683(81)90065-2
[18] Chiandussi, G, On the solution of a minimum compliance topology optimisation problem by optimality criteria without a priori volume constraint specification, Comput Mech, 38, 77-s99, (2006) · Zbl 1097.74048 · doi:10.1007/s00466-005-0722-1
[19] Cho, S; Jung, HS, Design sensitivity analysis and topology optimization of displacement-loaded non-linear structures, Comput Methods Appl Mech Eng, 192, 2539-2553, (2003) · Zbl 1050.74037 · doi:10.1016/S0045-7825(03)00274-3
[20] Chu, DN; Xie, YM; Hira, A; Steven, GP, Evolutionary structural optimization for problems with stiffness constraints, Finite Elem Anal Des, 21, 239-251, (1996) · Zbl 0875.73149 · doi:10.1016/0168-874X(95)00043-S
[21] Coenen, EWC; Kouznetsova, VG; Geers, MGD, Multi-scale continuous-discontinuous framework for computational-homogenization-localization, J Mech Phys Solids, 60, 1486-1507, (2012) · doi:10.1016/j.jmps.2012.04.002
[22] Da D, Cui X, Long K, Li G (2016) Concurrent topological design of composite structures and the underlying multi-phase materials. Comput Struct. doi:10.1016/j.compstruc.2016.10.006
[23] Deaton, JD; Grandhi, RV, A survey of structural and multidisciplinary continuum topology optimization: post 2000, Struct Multidiscip Optim, 49, 1-38, (2014) · doi:10.1007/s00158-013-0956-z
[24] Du, J; Olhoff, N, Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps, Struct Multidiscip Optim, 34, 91-110, (2007) · Zbl 1273.74398 · doi:10.1007/s00158-007-0101-y
[25] Duysinx, P; Bendsøe, MP, Topology optimization of continuum structures with local stress constraints, Int J Numer Methods Eng, 43, 1453-1478, (1998) · Zbl 0924.73158 · doi:10.1002/(SICI)1097-0207(19981230)43:8<1453::AID-NME480>3.0.CO;2-2
[26] Edwards, C; Kim, H; Budd, C, An evaluative study on ESO and SIMP for optimising a cantilever tie-beam, Struct Multidiscip Optim, 34, 403-414, (2007) · doi:10.1007/s00158-007-0102-x
[27] Eschenauer, H; Kobelev, V; Schumacher, A, Bubble method for topology and shape optimization of structures, Struct Optim, 8, 42-51, (1994) · doi:10.1007/BF01742933
[28] Feyel, F; Chaboche, J, \(\text{FE}^{2}\) multiscale approach for modelling the elastoviscoplastic behaviour of long fibre sic/ti composite materials, Comput Methods Appl Mech Eng, 183, 309-330, (2000) · Zbl 0993.74062 · doi:10.1016/S0045-7825(99)00224-8
[29] Fleming, J; Lin, S; El-Kady, I; Biswas, R; Ho, K, All-metallic three-dimensional photonic crystals with a large infrared bandgap, Nature, 417, 52-55, (2002) · doi:10.1038/417052a
[30] Fritzen F, Hodapp M (2016) The finite element square reduced (fe\^{}{2R}) method with gpu acceleration: towards three-dimensional two-scale simulations. Int J Numer Methods Eng. doi:10.1002/nme.5188 · Zbl 1352.74352
[31] Fritzen, F; Leuschner, M, Reduced basis hybrid computational homogenization based on a mixed incremental formulation, Comput Methods Appl Mech Eng, 260, 143-154, (2013) · Zbl 1286.74081 · doi:10.1016/j.cma.2013.03.007
[32] Fritzen, F; Hodapp, M; Leuschner, M, Gpu accelerated computational homogenization based on a variational approach in a reduced basis framework, Comput Methods Appl Mech Eng, 278, 186-217, (2014) · Zbl 1423.74881 · doi:10.1016/j.cma.2014.05.006
[33] Fritzen F, Xia L, Leuschner M, Breitkopf P (2016) Topology optimization of multiscale elastoviscoplastic structures. Int J Numer Methods Eng. doi:10.1002/nme.5122 · Zbl 1352.74239
[34] Fujii, D; Chen, BC; Kikuchi, N, Composite material design of two-dimensional structures using the homogenization design method, Int J Numer Methods Eng, 50, 2031-2051, (2001) · Zbl 0994.74055 · doi:10.1002/nme.105
[35] Fullwood, DT; Niezgoda, SR; Adams, BL; Kalidindi, SR, Microstructure sensitive design for performance optimization, Prog Mater Sci, 55, 477-562, (2010) · doi:10.1016/j.pmatsci.2009.08.002
[36] Geers, MGD; Kouznetsova, VG; Brekelmans, WAM, Multi-scale computational homogenization: trends and challenges, J Comput Appl Math, 234, 2175-2182, (2010) · Zbl 1402.74107 · doi:10.1016/j.cam.2009.08.077
[37] Ghabraie, K, An improved soft-kill BESO algorithm for optimal distribution of single or multiple material phases, Struct Multidiscipl Optim, 52, 773-790, (2015) · doi:10.1007/s00158-015-1268-2
[38] Ghabraie, K; Xie, YM; Huang, X; Ren, G, Shape and reinforcement optimization of underground tunnels, J Comput Sci Technol, 4, 51-63, (2010) · doi:10.1299/jcst.4.51
[39] Gibiansky, L; Sigmund, O, Multiphase composites with extremal bulk modulus, J Mech Phys Solids, 48, 461-498, (2000) · Zbl 0989.74060 · doi:10.1016/S0022-5096(99)00043-5
[40] Guedes, J; Kikuchi, N, Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods, Comput Methods Appl Mech Eng, 83, 143-198, (1990) · Zbl 0737.73008 · doi:10.1016/0045-7825(90)90148-F
[41] Guest, JK; Prévost, JH, Optimizing multifunctional materials: design of microstructures for maximized stiffness and fluid permeability, Int J Solids Struct, 43, 7028-7047, (2006) · Zbl 1120.74712 · doi:10.1016/j.ijsolstr.2006.03.001
[42] Guest, JK; Prévost, JH, Design of maximum permeability material structures, Comput Methods Appl Mech Eng, 196, 1006-1017, (2007) · Zbl 1120.74713 · doi:10.1016/j.cma.2006.08.006
[43] Hashin, Z, Analysis of composite materials: a survey, J Appl Mech, 50, 481-505, (1983) · Zbl 0542.73092 · doi:10.1115/1.3167081
[44] Hashin, Z; Shtrikman, S, A variational approach to the theory of the effective magnetic permeability of multiphase materials, J Appl Phys, 33, 3125-3131, (1962) · Zbl 0111.41401 · doi:10.1063/1.1728579
[45] Hassani, B; Hinton, E, A review of homogenization and topology opimization II: analytical and numerical solution of homogenization equations, Comput Struct, 69, 719-738, (1998) · Zbl 0948.74048 · doi:10.1016/S0045-7949(98)00132-1
[46] Hinton, E; Sienz, J, Fully stressed topological design of structures using an evolutionary procedure, Eng Comput, 12, 229-244, (1995) · Zbl 0825.73468 · doi:10.1108/02644409510799578
[47] Huang, X; Xie, YM, Bidirectional evolutionary topology optimization for structures with geometrical and material nonlinearities, AIAA J, 45, 308-313, (2007) · doi:10.2514/1.25046
[48] Huang, X; Xie, YM, Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method, Finite Elem Anal Des, 43, 1039-1049, (2007) · doi:10.1016/j.finel.2007.06.006
[49] Huang, X; Xie, YM, A new look at ESO and BESO optimization methods, Struct Multidiscip Optim, 35, 89-92, (2008) · doi:10.1007/s00158-007-0140-4
[50] Huang, X; Xie, YM, Optimal design of periodic structures using evolutionary topology optimization, Struct Multidiscip Optim, 36, 597-606, (2008) · doi:10.1007/s00158-007-0196-1
[51] Huang, X; Xie, YM, Optimal design of periodic structures using evolutionary topology optimization, Struct Multidiscip Optim, 36, 597-606, (2008) · doi:10.1007/s00158-007-0196-1
[52] Huang, X; Xie, YM, Topology optimization of nonlinear structures under displacement loading, Eng Struct, 30, 2057-2068, (2008) · doi:10.1016/j.engstruct.2008.01.009
[53] Huang, X; Xie, YM, Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials, Comput Mech, 43, 393-401, (2009) · Zbl 1162.74425 · doi:10.1007/s00466-008-0312-0
[54] Huang, X; Xie, YM, Evolutionary topology optimization of continuum structures with an additional displacement constraint, Struct Multidiscip Optim, 40, 409-416, (2010) · Zbl 1274.74343 · doi:10.1007/s00158-009-0382-4
[55] Huang, X; Xie, YM, A further review of ESO type methods for topology optimization, Struct Multidiscip Optim, 41, 671-683, (2010) · doi:10.1007/s00158-010-0487-9
[56] Huang X, Xie YM (2010c) Topology optimization of continuum structures: methods and applications. Wiley, Chichester · Zbl 1279.90001 · doi:10.1002/9780470689486
[57] Huang, X; Xie, YM, Evolutionary topology optimization of continuum structures including design-dependent self-weight loads, Finite Elem Anal Des, 47, 942-948, (2011) · doi:10.1016/j.finel.2011.03.008
[58] Huang, X; Xie, YM; Lu, G, Topology optimization of energy-absorbing structures, Int J Crashworthiness, 12, 663-675, (2007) · doi:10.1080/13588260701497862
[59] Huang, X; Zuo, Z; Xie, YM, Evolutionary topological optimization of vibrating continuum structures for natural frequencies, Comput Struct, 88, 357-364, (2010) · doi:10.1016/j.compstruc.2009.11.011
[60] Huang, X; Radman, A; Xie, YM, Topological design of microstructures of cellular materials for maximum bulk or shear modulus, Comput Mater Sci, 50, 1861-1870, (2011) · doi:10.1016/j.commatsci.2011.01.030
[61] Huang, X; Xie, YM; Jia, B; Li, Q; Zhou, SW, Evolutionary topology optimization of periodic composites for extremal magnetic permeability and electrical permittivity, Struct Multidiscip Optim, 46, 385-398, (2012) · Zbl 1274.78096 · doi:10.1007/s00158-012-0766-8
[62] Huang, X; Zhou, SW; Xie, YM; Li, Q, Topology optimization of microstructures of cellular materials and composites for macrostructures, Comput Mater Sci, 67, 397-407, (2013) · doi:10.1016/j.commatsci.2012.09.018
[63] Huang, X; Li, Y; Zhou, S; Xie, YM, Topology optimization of compliant mechanisms with desired structural stiffness, Eng Struct, 79, 13-21, (2014) · doi:10.1016/j.engstruct.2014.08.008
[64] Huang, X; Zhou, S; Sun, G; Li, G; Xie, YM, Topology optimization for microstructures of viscoelastic composite materials, Comput Methods Appl Mech Eng, 283, 503-516, (2015) · Zbl 1423.74748 · doi:10.1016/j.cma.2014.10.007
[65] Joannopoulos J, Johnson S, Winn J, Meade R (2011) Photonic crystals: molding the flow of light. Princeton University Press, Princeton · Zbl 1144.78303
[66] Kato, J; Yachi, D; Terada, K; Kyoya, T, Topology optimization of micro-structure for composites applying a decoupling multi-scale analysis, Struct Multidiscip Optim, 49, 595-608, (2014) · doi:10.1007/s00158-013-0994-6
[67] Kim, H; Garcia, M; Querin, O; Steven, GP; Xie, YM, Introduction of fixed grid in evolutionary structural optimisation, Eng Comput, 17, 427-439, (2000) · Zbl 0982.74054 · doi:10.1108/02644400010334838
[68] Kim, H; Querin, O; Steven, GP; Xie, YM, A method for varying the number of cavities in an optimized topology using evolutionary structural optimization, Struct Multidiscip Optim, 19, 140-147, (2000) · doi:10.1007/s001580050094
[69] Kim, H; Querin, O; Steven, GP; Xie, YM, Improving efficiency of evolutionary structural optimization by implementing fixed grid mesh, Struct Multidiscip Optim, 24, 441-448, (2002) · doi:10.1007/s00158-002-0257-4
[70] Kim, H; Querin, OM; Steven, GP; Xie, YM, Determination of an optimal topology with a predefined number of cavities, AIAA J, 40, 739-744, (2002) · doi:10.2514/2.1706
[71] Kohn, R; Strang, G, Optimal design and relaxation of variational problems (part I), Commun Pure Appl Math, 39, 113-137, (1986) · Zbl 0609.49008 · doi:10.1002/cpa.3160390107
[72] Kohn, R; Strang, G, Optimal design and relaxation of variational problems (part I), Commun Pure Appl Math, 39, 139-182, (1986) · Zbl 0621.49008 · doi:10.1002/cpa.3160390202
[73] Kohn, R; Strang, G, Optimal design and relaxation of variational problems (part I), Commun Pure Appl Math, 39, 353-377, (1986) · Zbl 0694.49004 · doi:10.1002/cpa.3160390305
[74] Le, B; Yvonnet, J; He, QC, Computational homogenization of nonlinear elastic materials using neural networks, Int J Numer Methods Eng, 104, 1061-1084, (2015) · Zbl 1352.74266 · doi:10.1002/nme.4953
[75] Le, C; Norato, J; Bruns, T; Ha, C; Tortorelli, D, Stress-based topology optimization for continua, Struct Multidiscip Optim, 41, 605-620, (2010) · doi:10.1007/s00158-009-0440-y
[76] Li, Q; Steven, GP; Xie, YM, On equivalence between stress criterion and stiffness criterion in evolutionary structural optimization, Struct Optim, 18, 67-73, (1999) · doi:10.1007/BF01210693
[77] Li, Q; Steven, G; Xie, YM, A simple checkerboard suppression algorithm for evolutionary structural optimization, Struct Multidiscip Optim, 22, 230-239, (2001) · doi:10.1007/s001580100140
[78] Li, Q; Steven, GP; Xie, YM; Querin, OM, Evolutionary topology optimization for temperature reduction of heat conducting fields, Int J Heat Mass Transf, 47, 5071-5083, (2004) · Zbl 1083.80008 · doi:10.1016/j.ijheatmasstransfer.2004.06.010
[79] Li, Y; Huang, X; Meng, F; Zhou, S, Evolutionary topological design for phononic band gap crystals, Struct Multidiscip Optim, 54, 595-617, (2016) · doi:10.1007/s00158-016-1424-3
[80] Li, Y; Huang, X; Zhou, S, Topological design of cellular phononic band gap crystals, Materials, 9, 186-208, (2016) · doi:10.3390/ma9030186
[81] Liu, Q; Chan, R; Huang, X, Concurrent topology optimization of macrostructures and material microstructures for natural frequency, Mater Des, 106, 380-390, (2016) · doi:10.1016/j.matdes.2016.05.115
[82] Liu, Y; Jin, F; Li, Q; Zhou, S, A fixed-grid bidirectional evolutionary structural optimization method and its applications in tunnelling engineering, Int J Numer Methods Eng, 73, 1788-1810, (2008) · Zbl 1159.74396 · doi:10.1002/nme.2145
[83] Lu, M; Feng, L; Chen, Y, Phononic crystals and acoustic metamaterials, Mater Today, 12, 34-42, (2009) · doi:10.1016/S1369-7021(09)70315-3
[84] Luo, Z; Wang, M; Wang, S; Wei, P, A level set-based parameterization method for structural shape and topology optimization, Int J Numer Methods Eng, 76, 1-26, (2008) · Zbl 1158.74443 · doi:10.1002/nme.2092
[85] Manickarajah, D; Xie, YM; Steven, GP, An evolutionary method for optimization of plate buckling resistance, Finite Elem Anal Des, 29, 205-230, (1998) · Zbl 0922.73041 · doi:10.1016/S0168-874X(98)00012-2
[86] Maute, K; Schwarz, S; Ramm, E, Adaptive topology optimization of elastoplastic structures, Struct Optim, 15, 81-91, (1998) · doi:10.1007/BF01278493
[87] McKeown, JJ, A note on the equivalence between maximum stiffness and maximum strength trusses, Eng Optim, 29, 443-456, (1997) · doi:10.1080/03052159708941007
[88] Meng, F; Huang, X; Jia, B, Bi-directional evolutionary optimization for photonic band gap structures, J Comput Phys, 302, 393-404, (2015) · Zbl 1349.82100 · doi:10.1016/j.jcp.2015.09.010
[89] Meng, F; Li, S; Lin, H; Jia, B; Huang, X, Topology optimization of photonic structures for all-angle negative refraction, Finite Elem Anal Des, 117, 46-56, (2016) · doi:10.1016/j.finel.2016.04.005
[90] Michel, JC; Moulinec, H; Suquet, P, Effective properties of composite materials with periodic microstructure: a computational approach, Comput Methods Appl Mech Eng, 172, 109-143, (1999) · Zbl 0964.74054 · doi:10.1016/S0045-7825(98)00227-8
[91] Michell, AGM, Lviii. the limits of economy of material in frame-structures, Lond Edinb Dublin Philos Mag J Sci, 8, 589-597, (1904) · JFM 35.0828.01 · doi:10.1080/14786440409463229
[92] Munk D, Vio G, Steven GP (2016) A simple alternative formulation for structural optimisation with dynamic and buckling objectives. Struct Multidiscip Optim. doi:10.1007/s00158-016-1544-9
[93] Neves, MM; Rodrigues, H; Guedes, JM, Optimal design of periodic linear elastic microstructures, Comput Struct, 76, 421-429, (2000) · doi:10.1016/S0045-7949(99)00172-8
[94] Neves, MM; Sigmund, O; Bendsøe, MP, Topology optimization of periodic microstructures with a penalization of highly localized buckling modes, Int J Numer Methods Eng, 54, 809-834, (2002) · Zbl 1034.74041 · doi:10.1002/nme.449
[95] Nguyen, T; Ghabraie, K; Tran-Cong, T, Applying bi-directional evolutionary structural optimisation method for tunnel reinforcement design considering nonlinear material behaviour, Comput Geotech, 55, 57-66, (2014) · doi:10.1016/j.compgeo.2013.07.015
[96] Niu, B; Yan, J; Cheng, G, Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency, Struct Multidiscip Optim, 39, 115-132, (2009) · doi:10.1007/s00158-008-0334-4
[97] Norato, JA; Bendsøe, MP; Haber, RB; Tortorelli, DA, A topological derivative method for topology optimization, Struct Multidiscip Optim, 33, 375-386, (2007) · Zbl 1245.74074 · doi:10.1007/s00158-007-0094-6
[98] Pedersen, N, Maximization of eigenvalues using topology optimization, Struct Multidiscip Optim, 20, 2-11, (2000) · doi:10.1007/s001580050130
[99] Pennec, Y; Vasseur, J; Djafari-Rouhani, B; Dobrzyński, L; Deymier, P, Two-dimensional phononic crystals: examples and applications, Surf Sci Rep, 65, 229-291, (2010) · doi:10.1016/j.surfrep.2010.08.002
[100] Picelli, R; Vicente, W; Pavanello, R, Bi-directional evolutionary structural optimization for design-dependent fluid pressure loading problems, Eng Optim, 47, 1324-1342, (2015) · doi:10.1080/0305215X.2014.963069
[101] Picelli, R; Vicente, W; Pavanello, R; Xie, YM, Evolutionary topology optimization for natural frequency maximization problems considering acoustic-structure interaction, Finite Elem Anal Des, 106, 56-64, (2015) · doi:10.1016/j.finel.2015.07.010
[102] Picelli R, van Dijk R, Vicente W, Pavanello R, Langelaar M, van Keulen F (2016) Topology optimization for submerged buoyant structures. Eng Optim. doi:10.1080/0305215X.2016.1164147
[103] Prager, W; Rozvany, G, Optimal layout of grillages, J Struct Mech, 5, 1-18, (1977) · doi:10.1080/03601217708907301
[104] Proos, K; Steven, GP; Querin, O; Xie, YM, Stiffness and inertia multicriteria evolutionary structural optimisation, Eng Comput, 18, 1031-1054, (2001) · Zbl 1157.74321 · doi:10.1108/02644400110404028
[105] Querin, O; Steven, GP; Xie, YM, Evolutionary structural optimisation using an additive algorithm, Finite Elem Anal Des, 34, 291-308, (2000) · Zbl 0980.74051 · doi:10.1016/S0168-874X(99)00044-X
[106] Querin OM (1997) Evolutionary structural optimisation: stress based formulation and implementation. Ph.D. thesis, Department of Aeronautical Engineering, University of Sydney, Australia
[107] Querin, OM; Steven, GP; Xie, YM, Evolutionary structural optimisation (ESO) using a bidirectional algorithm, Eng Comput, 15, 1031-1048, (1998) · Zbl 0938.74056 · doi:10.1108/02644409810244129
[108] Querin, OM; Young, V; Steven, GP; Xie, YM, Computational efficiency and validation of bi-directional evolutionary structural optimization, Comput Methods Appl Mech Eng, 189, 559-573, (2000) · Zbl 1003.74059 · doi:10.1016/S0045-7825(99)00309-6
[109] Radman, A; Huang, X; Xie, YM, Topological optimization for the design of microstructures of isotropic cellular materials, Eng Optim, 45, 1331-1348, (2013) · doi:10.1080/0305215X.2012.737781
[110] Radman, A; Huang, X; Xie, YM, Topology optimization of functionally graded cellular materials, J Mater Sci, 48, 1503-1510, (2013) · doi:10.1007/s10853-012-6905-1
[111] Radman, A; Huang, X; Xie, YM, Maximizing stiffness of functionally graded materials with prescribed variation of thermal conductivity, Comput Mater Sci, 82, 457-463, (2014) · doi:10.1016/j.commatsci.2013.10.024
[112] Radman, A; Huang, X; Xie, YM, Topological design of microstructures of multi-phase materials for maximum stiffness or thermal conductivity, Comput Mater Sci, 91, 266-273, (2014) · doi:10.1016/j.commatsci.2014.04.064
[113] Ren, G; Smith, J; Tang, J; Xie, YM, Underground excavation shape optimization using an evolutionary procedure, Comput Geotech, 32, 122-132, (2005) · doi:10.1016/j.compgeo.2004.12.001
[114] Ren, G; Zuo, Z; Xie, YM; Smith, J, Underground excavation shape optimization considering material nonlinearities, Comput Geotech, 58, 81-87, (2014) · doi:10.1016/j.compgeo.2014.02.003
[115] Rietz, A, Sufficiency of a finite exponent in simp (power law) methods, Struct Multidiscip Optim, 21, 159-163, (2001) · doi:10.1007/s001580050180
[116] Rozvany, G, Grillages of maximum strength and maximum stiffness, Int J Mech Sci, 14, 651-666, (1972) · doi:10.1016/0020-7403(72)90023-9
[117] Rozvany, G, Optimal load transmission by flexure, Comput Methods Appl Mech Eng, 1, 253-263, (1972) · doi:10.1016/0045-7825(72)90007-2
[118] Rozvany, G; Zhou, M; Sigmund, O; Adeli, H (ed.), Optimization of topology, 340-399, (1994), London
[119] Rozvany, GI; Querin, OM, Combining ESO with rigorous optimality criteria, Int J Veh Des, 28, 294-299, (2002) · doi:10.1504/IJVD.2002.001991
[120] Rozvany, GIN, A critical review of established methods of structural topology optimization, Struct Multidiscip Optim, 37, 217-237, (2009) · Zbl 1274.74004 · doi:10.1007/s00158-007-0217-0
[121] Schwarz, S; Maute, K; Ramm, E, Topology and shape optimization for elastoplastic structural response, Comput Methods Appl Mech Eng, 190, 2135-2155, (2001) · Zbl 1067.74052 · doi:10.1016/S0045-7825(00)00227-9
[122] Sethian, JA; Wiegmann, A, Structural boundary design via level set and immersed interface methods, J Comput Phys, 163, 489-528, (2000) · Zbl 0994.74082 · doi:10.1006/jcph.2000.6581
[123] Sigmund, O, Materials with prescribed constitutive parameters: an inverse homogenization problem, Int J Solids Struct, 31, 2313-2329, (1994) · Zbl 0946.74557 · doi:10.1016/0020-7683(94)90154-6
[124] Sigmund, O, On the design of compliant mechanisms using topology optimization, J Struct Mech, 25, 493-524, (1997)
[125] Sigmund, O, New class of extremal composites, J Mech Phys Solids, 48, 397-428, (2000) · Zbl 0994.74056 · doi:10.1016/S0022-5096(99)00034-4
[126] Sigmund, O, A 99 line topology optimization code written in Matlab, Struct Multidiscip Optim, 21, 120-127, (2001) · doi:10.1007/s001580050176
[127] Sigmund, O; Maute, K, Topology optimization approaches: a comparative review, Struct Multidiscip Optim, 48, 1031-1055, (2013) · doi:10.1007/s00158-013-0978-6
[128] Sigmund, O; Petersson, J, Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima, Struct Optim, 16, 68-75, (1998) · doi:10.1007/BF01214002
[129] Sigmund, O; Torquato, S, Design of materials with extreme thermal expansion using a three-phase topology optimization method, J Mech Phys Solids, 45, 1037-1067, (1997) · doi:10.1016/S0022-5096(96)00114-7
[130] Sokolowski, J; Zochowski, A, On the topological derivative in shape optimization, SIAM J Control Optim, 37, 1251-1272, (1999) · Zbl 0940.49026 · doi:10.1137/S0363012997323230
[131] Steven, GP; Li, Q; Xie, YM, Evolutionary topology and shape design for general physical field problems, Comput Mech, 26, 129-139, (2000) · Zbl 0961.74050 · doi:10.1007/s004660000160
[132] Stolpe, M; Svanberg, K, An alternative interpolation scheme for minimum compliance topology optimization, Struct Multidiscip Optim, 22, 116-124, (2001) · doi:10.1007/s001580100129
[133] Stolpe, M; Svanberg, K, On the trajectories of penalization methods for topology optimization, Struct Multidiscip Optim, 21, 128-139, (2001) · doi:10.1007/s001580050177
[134] Su, W; Liu, S, Size-dependent optimal microstructure design based on couple-stress theory, Struct Multidiscip Optim, 42, 243-254, (2010) · doi:10.1007/s00158-010-0484-z
[135] Tanskanen, P, The evolutionary structural optimization method: theoretical aspects, Comput Methods Appl Mech Eng, 191, 5485-5498, (2002) · Zbl 1083.74572 · doi:10.1016/S0045-7825(02)00464-4
[136] Theocaris, PS; Stavroulaki, GE, Optimal material design in composites: an iterative approach based on homogenized cells, Comput Methods Appl Mech Eng, 169, 31-42, (1999) · Zbl 0945.74054 · doi:10.1016/S0045-7825(98)00174-1
[137] Dijk, N; Maute, K; Langelaar, M; Keulen, F, Level-set methods for structural topology optimization: a review, Struct Multidiscip Optim, 48, 437-472, (2013) · doi:10.1007/s00158-013-0912-y
[138] Vicente, W; Picelli, R; Pavanello, R; Xie, YM, Topology optimization of frequency responses of fluid-structure interaction systems, Finite Elem Anal Des, 98, 1-13, (2015) · doi:10.1016/j.finel.2015.01.009
[139] Vicente, W; Zuo, Z; Pavanello, R; Calixto, T; Picelli, R; Xie, YM, Concurrent topology optimization for minimizing frequency responses of two-level hierarchical structures, Comput Methods Appl Mech Eng, 301, 116-136, (2016) · Zbl 1425.74380 · doi:10.1016/j.cma.2015.12.012
[140] Wadley, H; Fleck, N; Evans, A, Fabrication and structural performance of periodic cellular metal sandwich structures, Compos Sci Technol, 63, 2331-2343, (2003) · doi:10.1016/S0266-3538(03)00266-5
[141] Wang, F; Sigmund, O; Jensen, J, Design of materials with prescribed nonlinear properties, J Mech Phys Solids, 69, 156-174, (2014) · doi:10.1016/j.jmps.2014.05.003
[142] Wang, MY; Wang, X; Guo, D, A level set method for structural topology optimization, Comput Methods Appl Mech Eng, 192, 227-246, (2003) · Zbl 1083.74573 · doi:10.1016/S0045-7825(02)00559-5
[143] Wang, Y; Luo, Z; Zhang, N; Kang, Z, Topological shape optimization of microstructural metamaterials using a level set method, Comput Mater Sci, 87, 178-186, (2014) · doi:10.1016/j.commatsci.2014.02.006
[144] Xia L (2016) Multiscale structural topology optimization. Elsevier-ISTE, London
[145] Xia, L; Breitkopf, P, Concurrent topology optimization design of material and structure within fe\(^{2}\) nonlinear multiscale analysis framework, Comput Methods Appl Mech Eng, 278, 524-542, (2014) · Zbl 1423.74770 · doi:10.1016/j.cma.2014.05.022
[146] Xia, L; Breitkopf, P, A reduced multiscale model for nonlinear structural topology optimization, Comput Methods Appl Mech Eng, 280, 117-134, (2014) · Zbl 1423.74771 · doi:10.1016/j.cma.2014.07.024
[147] Xia, L; Breitkopf, P, Design of of materials using topology optimization and energy-based homogenization approach in Matlab, Struct Multidiscip Optim, 52, 1229-1241, (2015) · doi:10.1007/s00158-015-1294-0
[148] Xia, L; Breitkopf, P, Multiscale structural topology optimization with an approximate constitutive model for local material microstructure, Comput Methods Appl Mech Eng, 286, 147-167, (2015) · Zbl 1423.74772 · doi:10.1016/j.cma.2014.12.018
[149] Xia L, Breitkopf P (2016) Recent advances on topology optimization of multiscale nonlinear structures. Arch Comput Methods Eng. doi:10.1007/s11831-016-9170-7 · Zbl 1364.74086
[150] Xia, L; Raghavan, B; Breitkopf, P; Zhang, W, Numerical material representation using proper orthogonal decomposition and diffuse approximation, Appl Math Comput, 224, 450-462, (2013) · Zbl 1334.74099
[151] Xia L, Fritzen F, Breitkopf P (2016) Evolutionary topology optimization of elastoplastic structures. Struct Multidiscip Optim. doi:10.1007/s00158-016-1523-1
[152] Xia, L; Raghavan, B; Breitkopf, P, Towards surrogate modeling of material microstructures through the processing variables, Appl Math Comput, 294, 157-168, (2017) · Zbl 1411.74065
[153] Xia, Q; Shi, T, Optimization of structures with thin-layer functional device on its surface through a level set based multiple-type boundary method, Comput Methods Appl Mech Eng, 311, 56-70, (2016) · Zbl 1439.74305 · doi:10.1016/j.cma.2016.08.001
[154] Xia, Q; Shi, T, Topology optimization of compliant mechanism and its support through a level set method, Comput Methods Appl Mech Eng, 305, 359-375, (2016) · Zbl 1425.74381 · doi:10.1016/j.cma.2016.03.017
[155] Xia, Q; Wang, M; Wang, S; Chen, S, Semi-Lagrange method for level-set-based structural topology and shape optimization, Struct Multidiscip Optim, 31, 419-429, (2006) · Zbl 1245.74076 · doi:10.1007/s00158-005-0597-y
[156] Xia, Q; Shi, T; Wang, M, A level set based shape and topology optimization method for maximizing the simple or repeated first eigenvalue of structure vibration, Struct Multidiscip Optim, 43, 473-485, (2011) · Zbl 1274.74416 · doi:10.1007/s00158-010-0595-6
[157] Xia, Q; Shi, T; Liu, S; Wang, M, A level set solution to the stress-based structural shape and topology optimization, Comput Struct, 90-91, 55-64, (2012) · doi:10.1016/j.compstruc.2011.10.009
[158] Xia, Q; Wang, M; Shi, T, A level set method for shape and topology optimization of both structure and support of continuum structures, Comput Methods Appl Mech Eng, 272, 340-353, (2014) · Zbl 1296.74084 · doi:10.1016/j.cma.2014.01.014
[159] Xia, Z; Zhang, Y; Ellyin, F, A unified periodical boundary conditions for representative volume elements of composites and applications, Int J Solids Struct, 40, 1907-1921, (2003) · Zbl 1048.74011 · doi:10.1016/S0020-7683(03)00024-6
[160] Xia, Z; Zhou, C; Yong, Q; Wang, X, On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites, Int J Solids Struct, 43, 266-278, (2006) · Zbl 1119.74359 · doi:10.1016/j.ijsolstr.2005.03.055
[161] Xie YM, Steven GP (1992) Shape and layout optimization via an evolutionary procedure. In: Proceedings of the international conference on computational engineering science · Zbl 1423.74748
[162] Xie, YM; Steven, GP, A simple evolutionary procedure for structural optimization, Comput Struct, 49, 885-896, (1993) · doi:10.1016/0045-7949(93)90035-C
[163] Xie, YM; Steven, GP, Evolutionary structural optimization for dynamic problems, Comput Struct, 58, 1067-1073, (1996) · Zbl 0900.73510 · doi:10.1016/0045-7949(95)00235-9
[164] Xie YM, Steven GP (1997) Evolutionary structural optimization. Springer, London · Zbl 0898.73003 · doi:10.1007/978-1-4471-0985-3
[165] Xie, YM; Zuo, ZH; Huang, X; Rong, JH, Convergence of topological patterns of optimal periodic structures under multiple scales, Struct Multidiscip Optim, 46, 41-50, (2012) · Zbl 1274.74418 · doi:10.1007/s00158-011-0750-8
[166] Xie, YM; Yang, X; Shen, J; Yan, X; Ghaedizadeh, A; Rong, J; Huang, X; Zhou, S, Designing orthotropic materials for negative or zero compressibility, Int J Solids Struct, 51, 4038-4051, (2014) · doi:10.1016/j.ijsolstr.2014.07.024
[167] Xu, B; Xie, YM, Concurrent design of composite macrostructure and cellular microstructure under random excitations, Compos Struct, 123, 65-77, (2015) · doi:10.1016/j.compstruct.2014.10.037
[168] Xu, B; Jiang, J; Xie, YM, Concurrent design of composite macrostructure and multi-phase material microstructure for minimum dynamic compliance, Compos Struct, 128, 221-233, (2015) · doi:10.1016/j.compstruct.2015.03.057
[169] Xu, B; Huang, X; Xie, YM, Two-scale dynamic optimal design of composite structures in the time domain using equivalent static loads, Compos Struct, 142, 335-345, (2016) · doi:10.1016/j.compstruct.2016.01.090
[170] Xu, B; Huang, X; Zhou, S; Xie, YM, Concurrent topological design of composite thermoelastic macrostructure and microstructure with multi-phase material for maximum stiffness, Compos Struct, 150, 84-102, (2016) · doi:10.1016/j.compstruct.2016.04.038
[171] Yan, X; Huang, X; Zha, Y; Xie, YM, Concurrent topology optimization of structures and their composite microstructures, Comput Struct, 133, 103-110, (2014) · doi:10.1016/j.compstruc.2013.12.001
[172] Yan, X; Huang, X; Sun, G; Xie, YM, Two-scale optimal design of structures with thermal insulation materials, Compos Struct, 120, 358-365, (2015) · doi:10.1016/j.compstruct.2014.10.013
[173] Yang, X; Huang, X; Rong, J; Xie, YM, Design of 3D orthotropic materials with prescribed ratios for effective youngâăźs moduli, Comput Mater Sci, 67, 229-237, (2013) · doi:10.1016/j.commatsci.2012.08.043
[174] Yang, XY; Xie, YM; Steven, GP; Querin, OM, Bidirectional evolutionary method for stiffness optimization, AIAA J, 37, 1483-1488, (1999) · doi:10.2514/2.626
[175] Yang, XY; Xie, YM; Steven, GP; Querin, OM, Topology optimization for frequencies using an evolutionary method, J Struct Eng, 125, 1432-1438, (1999) · doi:10.1061/(ASCE)0733-9445(1999)125:12(1432)
[176] Yang, XY; Xie, YM; Liu, JS; Parks, GT; Clarkson, PJ, Perimeter control in the bidirectional evolutionary optimization method, Struct Multidiscip Optim, 24, 430-s440, (2002) · doi:10.1007/s00158-002-0256-5
[177] Yang, XY; Xie, YM; Steven, GP, Evolutionary methods for topology optimisation of continuous structures with design dependent loads, Comput Struct, 83, 956-963, (2005) · doi:10.1016/j.compstruc.2004.10.011
[178] Yi, YM; Park, SH; Youn, SK, Design of microstructures of viscoelastic composites for optimal damping characteristics, Int J Solids Struct, 37, 4791-4810, (2000) · Zbl 1007.74066 · doi:10.1016/S0020-7683(99)00181-X
[179] Yoon, G; Kim, Y, Topology optimization of material-nonlinear continuum structures by the element connectivity parameterization, Int J Numer Methods Eng, 69, 2196-2218, (2007) · Zbl 1194.74278 · doi:10.1002/nme.1843
[180] Young, V; Querin, OM; Steven, GP; Xie, YM, 3D and multiple load case bi-directional evolutionary structural optimization (BESO), Struct Optim, 18, 183-192, (1999) · doi:10.1007/BF01195993
[181] Yvonnet, J; Gonzalez, D; He, QC, Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials, Comput Methods Appl Mech Eng, 198, 2723-2737, (2009) · Zbl 1228.74067 · doi:10.1016/j.cma.2009.03.017
[182] Yvonnet, J; Monteiro, E; He, QC, Computational homogenization method and reduced database model for hyperelastic heterogeneous structures, Int J Multiscale Comput Eng, 11, 201-225, (2013) · doi:10.1615/IntJMultCompEng.2013005374
[183] Zhou, M; Rozvany, G, On the validity of ESO type methods in topology optimization, Struct Multidiscip Optim, 21, 80-83, (2001) · doi:10.1007/s001580050170
[184] Zhou, M; Rozvany, GIN, The COC algorithm, part II: topological, geometrical and generalized shape optimization, Comput Methods Appl Mech Eng, 89, 309-336, (1991) · doi:10.1016/0045-7825(91)90046-9
[185] Zhou, S; Cadman, J; Chen, Y; Li, W; Xie, YM; Huang, X; Appleyard, R; Sun, G; Li, Q, Design and fabrication of biphasic cellular materials with transport properties-a modified bidirectional evolutionary structural optimization procedure and Matlab program, Int J Heat Mass Transf, 55, 8149-8162, (2012) · doi:10.1016/j.ijheatmasstransfer.2012.08.028
[186] Zhu, J; Zhang, W; Qiu, K, Bi-directional evolutionary topology optimization using element replaceable method, Comput Mech, 40, 97-109, (2007) · Zbl 1222.74038 · doi:10.1007/s00466-006-0087-0
[187] Zhu J, Zhang W, Xia L (2015) Topology optimization in aircraft and aerospace structures design. Arch Comput Methods Eng. doi:10.1007/s11831-015-9151-2 · Zbl 1360.74128
[188] Zuo, Z; Huang, X; Rong, J; Xie, YM, Multi-scale design of composite materials and structures for maximum natural frequencies, Mater Des, 51, 1023-1034, (2013) · doi:10.1016/j.matdes.2013.05.014
[189] Zuo, ZH; Xie, YM, Evolutionary topology optimization of continuum structures with a global displacement control, Comput Aided Des, 56, 58-67, (2014) · doi:10.1016/j.cad.2014.06.007
[190] Zuo, ZH; Xie, YM; Huang, X, An improved bi-directional evolutionary topology optimization method for frequencies, Int J Struct Stab Dyn, 10, 55-75, (2010) · Zbl 1271.74378 · doi:10.1142/S0219455410003415
[191] Zuo, ZH; Xie, YM; Huang, X, Reinventing the wheel, J Mech Des, 133, 024,502, (2011) · doi:10.1115/1.4003411
[192] Zuo, ZH; Huang, X; Yang, X; Rong, JH; Xie, YM, Comparing optimal material microstructures with optimal periodic structures, Comput Mater Sci, 69, 137-147, (2013) · doi:10.1016/j.commatsci.2012.12.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.