×

Semi-Lagrange method for level-set-based structural topology and shape optimization. (English) Zbl 1245.74076

Summary: We introduce a semi-Lagrange scheme to solve the level-set equation in structural topology optimization. The level-set formulation of the problem expresses the optimization process as a solution to a Hamilton-Jacobi partial differential equation. It allows for the use of shape sensitivity to derive a speed function for a descent solution. However, numerical stability condition in the explicit upwind scheme for discrete level-set equation severely restricts the time step, requiring a large number of time steps for a numerical solution. To improve the numerical efficiency, we propose to employ a semi-Lagrange scheme to solve level-set equation. Therefore, a much larger time step can be obtained and a much smaller number of time steps are required. Numerical experiments comparing the semi-Lagrange method with the classical explicit upwind scheme are presented for the problem of mean compliance optimization in two dimensions.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
90C90 Applications of mathematical programming
49Q12 Sensitivity analysis for optimization problems on manifolds
65M25 Numerical aspects of the method of characteristics for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Allaire G, Kohn RV (1993) Topology optimization and optimal shape design using homogenization. In: Bendsoe MP, Moa Soares CA (eds) Topology design of structures, NATO ASI Series, Series E, vol 227. Kluwer, Dordrecht, pp 207–218
[2] Allaire G, Jouve F, Taoder A-M (2002) A level-set method for shape optimization. C R Math Acad Sci Paris Ser I 334:1125–1130 · Zbl 1115.49306 · doi:10.1016/S1631-073X(02)02412-3
[3] Allaire G, Jouve F, Taoder A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393 · Zbl 1136.74368 · doi:10.1016/j.jcp.2003.09.032
[4] Bendsoe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202 · doi:10.1007/BF01650949
[5] Bendsoe MP (1997) Optimization of structural topology, shape and material. Springer, Berlin Heidelberg New York
[6] Bendsoe MP, Haber R (1993) The Michell layout problem as a low volume fraction limit of the homogenization method for topology design: an asymptotic study. Struct Optim 6:63–267
[7] Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenisation method. Comput Methods Appl Mech Eng 71(1–2):197–224 · Zbl 0671.73065 · doi:10.1016/0045-7825(88)90086-2
[8] Bendsoe MP, Sigmund O (1999) Material interpolations in topology optimization. Arch Appl Mech 69:635–654 · Zbl 0957.74037 · doi:10.1007/s004190050248
[9] Courant R, Isaacson E, Rees M (1952) On the solution of nonlinear hyperbolic differential equations by finite differences. Commun Pure Appl Math 5:243 · Zbl 0047.11704 · doi:10.1002/cpa.3160050303
[10] Diaz AR, Bendoe MP (1992) Shape optimization of structures for multiple loading conditions using a homogenization method. Struct Optim 4:17–22 · doi:10.1007/BF01894077
[11] Harten A, Engquist B, Osher S, Chakravarthy S (1996) Uniformly high order essentially non-oscillatory schemes, III. J Comput Phys 74:347–377 · Zbl 0627.65101
[12] Hintermüller M, Ring W (2003) A second order shape optimization approach for image segmentation. SIAM J Appl Math 64(2):442–467 · Zbl 1073.68095 · doi:10.1137/S0036139902403901
[13] Mlejnek HP (1992) Some aspects of the genesis of structures. Struct Optim 5:64–69 · doi:10.1007/BF01744697
[14] Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Springer, Berlin Heidelberg New York · Zbl 1026.76001
[15] Osher S, Santosa F (2001) Level set methods for optimization problems involving geometry and constraints. I. Frequencies of a two-density inhomogeneous drum. J Comput Phys 171(1):272–288 · Zbl 1056.74061 · doi:10.1006/jcph.2001.6789
[16] Osher S, Sethian JA (1988) Front propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1):12–49 · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[17] Reynolds D, McConnachie J, Bettess P, Christie WC, Bull JW (1999) Reverse adaptivity–a new evolutionary tool for structural optimization. Int J Numer Methods Eng 45:529–552 · Zbl 0949.74053 · doi:10.1002/(SICI)1097-0207(19990620)45:5<529::AID-NME599>3.0.CO;2-2
[18] Ritchie H (1986) Eliminating the interpolation associated with the semi-Lagrangian scheme. Mon Weather Rev 114:135–146 · doi:10.1175/1520-0493(1986)114<0135:ETIAWT>2.0.CO;2
[19] Rozvany GIN (1988) Structural design via optimality criteria. Kluwer, Dordrecht
[20] Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and material science. Cambridge University Press, Cambridge · Zbl 0973.76003
[21] Sethian JA, Wiengmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528 · Zbl 0994.74082 · doi:10.1006/jcph.2000.6581
[22] Shu CW (1998) Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Cockburn B, Johnson C, Shu CW, Tadmor E (eds) Advanced numerical approximation of nonlinear hyperbolic equations, vol 1697. Springer, Berlin Heidelberg New York, pp 325–432 (Lecture Notes in Mathematics)
[23] Smolarkiewicz PK, Pudykiewicz J (1992) A class of semi-Lagrangian approximations for fluids. J Atmos Sci 49:2082–2096 · doi:10.1175/1520-0469(1992)049<2082:ACOSLA>2.0.CO;2
[24] Staniforth A, Côté J (1991) Semi-Lagrangian schemes for atmospheric models–a review. Mon Weather Rev 119:2206 · doi:10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2
[25] Strain J (1999) Semi-Lagrange methods for level set equations. J Comput Phys 151(2):498–533 · Zbl 0942.76060 · doi:10.1006/jcph.1999.6194
[26] Strain J (2000a) A fast modular semi-Lagrange method for moving interfaces. J Comput Phys 161(2):512–536 · Zbl 0959.65110 · doi:10.1006/jcph.2000.6508
[27] Strain J (2000b) Tree methods for moving interfaces. J Comput Phys 151(2):616–648 · Zbl 0942.76061 · doi:10.1006/jcph.1999.6205
[28] Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93(1–2):291–381 · Zbl 0850.73195 · doi:10.1016/0045-7825(91)90245-2
[29] Wang MY, Wang XM (2004) Color level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193(6–8):469–496 · Zbl 1060.74585 · doi:10.1016/j.cma.2003.10.008
[30] Wang MY, Wang XM (2005) A level-set based variational method for design and optimization of heterogeneous object. Comput Aided Des 37(3):321–337 · doi:10.1016/j.cad.2004.03.007
[31] Wang MY, Wang XM, Guo DM (2003) A level set method for structural topoloty optimization. Comput Methods Appl Mech Eng 192(1):227–246 · Zbl 1083.74573 · doi:10.1016/S0045-7825(02)00559-5
[32] Wang XM, Wang MY, Guo DM (2004) Structural shape and topology optimization in a level-set framework of region representation. Struct Multidiscipl Optim 27(1–2):1–19 · doi:10.1007/s00158-003-0363-y
[33] Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896 · doi:10.1016/0045-7949(93)90035-C
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.