×

Bi-directional evolutionary optimization for photonic band gap structures. (English) Zbl 1349.82100

Summary: Toward an efficient and easy-implement optimization for photonic band gap structures, this paper extends the bi-directional evolutionary structural optimization (BESO) method for maximizing photonic band gaps. Photonic crystals are assumed to be periodically composed of two dielectric materials with the different permittivity. Based on the finite element analysis and sensitivity analysis, BESO starts from a simple initial design without any band gap and gradually re-distributes dielectric materials within the unit cell so that the resulting photonic crystal possesses a maximum band gap between two specified adjacent bands. Numerical examples demonstrated the proposed optimization algorithm can successfully obtain the band gaps from the first to the tenth band for both transverse magnetic and electric polarizations. Some optimized photonic crystals exhibit novel patterns markedly different from traditional designs of photonic crystals.

MSC:

82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
82D25 Statistical mechanics of crystals

Software:

ESOFRAME
Full Text: DOI

References:

[1] Joannopoulos, J. D.; Johnson, S. G.; Winn, J. N.; Meade, R. D., Photonic Crystals: Molding the Flow of Light (2008), Princeton University Press · Zbl 1144.78303
[2] Fleming, J. G.; Lin, S.-Y.; El-Kady, I.; Biswas, R.; Ho, K. M., All-metallic three-dimensional photonic crystals with a large infrared bandgap, Nature, 417, 52-55 (2002)
[3] Hart, E. E.; Sobester, A.; Djidjeli, K.; Molinari, M.; Thomas, K. S.; Cox, S. J., A geometry optimization framework for photonic crystal design, Photonics Nanostruct. Fundam. Appl., 10, 25-35 (2012)
[4] Doosje, M.; Hoenders, B. J.; Knoester, J., Photonic bandgap optimization in inverted fcc photonic crystals, J. Opt. Soc. Am. B, 17, 600-606 (2000)
[5] Wu, J. H.; Liu, A. Q.; Ang, L. K., Band gap optimization of finite photonic structures using apodization method, J. Appl. Phys., 100, Article 084309 pp. (2006)
[6] Hossain, M. M.; Chen, G.; Jia, B.; Wang, X. H.; Gu, M., Optimization of enhanced absorption in 3D-woodpile metallic photonic crystals, Opt. Express, 18, 9048-9054 (2010)
[7] Wang, D.; Yu, Z.; Liu, Y.; Lu, P.; Han, L.; Feng, H.; Guo, X.; Ye, H., The optimal structure of two dimensional photonic crystals with the large absolute band gap, Opt. Express, 19, 19346-19353 (2011)
[8] Shi, P.; Huang, K.; Li, Y., Photonic crystal with complex unit cell for large complete band gap, Opt. Commun., 285, 3128-3132 (2012)
[9] Bendsøe, M. P., Optimal shape design as a material distribution problem, Struct. Optim., 1, 193-202 (1989)
[10] Rozvany, G. I.N.; Zhou, M.; Birker, T., Generalized shape optimization without homogenization, Struct. Optim., 4, 250-254 (1992)
[11] Zhou, M.; Rozvany, G. I.N., The COC algorithm, part II: topological, geometry and generalized shape optimization, Comput. Methods Appl. Mech. Eng., 89, 197-224 (1991)
[12] Bendsøe, M. P.; Sigmund, O., Topology Optimization: Theory, Methods and Applications (2003), Springer-Verlag: Springer-Verlag Berlin · Zbl 1059.74001
[13] Wang, M. Y.; Wang, X.; Guo, D., A level set method for structural topology optimization, Comput. Methods Appl. Mech. Eng., 192, 227-246 (2003) · Zbl 1083.74573
[14] Wang, X.; Wang, M. Y.; Guo, D., Structural shape and topology optimization in a level-set-based framework of region representation, Struct. Multidiscip. Optim., 27, 1-19 (2004)
[15] Sethian, J. A.; Wiegmann, A., Structural boundary design via level set and immersed interface methods, J. Comput. Phys., 163, 2, 489-528 (2000) · Zbl 0994.74082
[16] Zhou, S.; Li, W.; Sun, G.; Li, Q., A level-set procedure for the design of electromagnetic metamaterials, Opt. Express, 18, 6693-6702 (2010) · Zbl 0828.45001
[17] Zhou, S.; Li, W.; Chen, Y.; Sun, G.; Li, Q., Topology optimization for negative permeability metamaterials using level-set algorithm, Acta Mater., 59, 2624-2636 (2011)
[18] Xie, Y. M.; Steven, G. P., A simple evolutionary procedure for structural optimization, Comput. Struct., 49, 885-896 (1993)
[19] Xie, Y. M.; Steven, G. P., Evolutionary Structural Optimization (1997), Springer: Springer London · Zbl 0898.73003
[20] Huang, X.; Xie, Y. M., Evolutionary Topology Optimization of Continuum Structures: Methods and Applications (2010), John Wiley & Sons: John Wiley & Sons Chichester · Zbl 1279.90001
[21] Huang, X.; Xie, Y. M., Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method, Finite Elem. Anal. Des., 43, 14, 1039-1049 (2007)
[22] Huang, X.; Xie, Y. M., Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials, Comput. Mech., 43, 3, 393-401 (2009) · Zbl 1162.74425
[23] Dobson, D. C.; Cox, S. J., Maximizing band gaps in two-dimensional photonic crystals, SIAM J. Appl. Math., 59, 2108-2120 (1999) · Zbl 1027.78521
[24] Cox, S. J.; Dobson, D. C., Band structure optimization of two-dimensional photonic crystals in H-polarization, J. Comput. Phys., 158, 214-224 (2000) · Zbl 0949.65115
[25] Shen, L.; Ye, Z.; He, S., Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm, Phys. Rev. B, 68, Article 035109 pp. (2003)
[26] Preble, S.; Lipson, M., Two-dimensional photonic crystals designed by evolutionary algorithms, Appl. Phys. Lett., 86, Article 061111 pp. (2005)
[27] Li, H.; Jiang, L.; Jia, W.; Qiang, H.; Li, X., Genetic optimization of two-dimensional photonic crystals for large absolute band-gap, Opt. Commun., 282, 3012-3017 (2009)
[28] Dong, H. W.; Su, X. X.; Wang, Y. S.; Zhang, C., Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm, Struct. Multidiscip. Optim., 50, 593-604 (2014)
[29] Kao, C. Y.; Osher, S.; Yablonovitch, E., Maximizing band gaps in two-dimensional photonic crystals by using level set methods, Appl. Phys. B, 81, 235-244 (2005)
[30] He, L.; Kao, C.-Y.; Osher, S., Incorporating topological derivatives into shape derivatives based level set methods, J. Comput. Phys., 225, 891-909 (2007) · Zbl 1122.65057
[31] Takezawa, A.; Kitamura, M., Phase field method to optimize dielectric devices for electromagnetic wave propagation, J. Comput. Phys., 257, 216-240 (2014) · Zbl 1349.82123
[32] Sigmund, O.; Jensen, J. S., Systematic design of phononic band-gap materials and structures by topology optimization, Philos. Trans. R. Soc., Math. Phys. Eng. Sci., 361, 1001-1019 (2003) · Zbl 1067.74053
[33] Borel, P. I.; Harpøth, A.; Frandsen, L. H.; Kristensen, M.; Shi, P.; Jensen, J. S.; Sigmund, O., Topology optimization and fabrication of photonic crystal structures, Opt. Express, 12, 1996-2001 (2004)
[34] Sigmund, O.; Hougaard, K., Geometric properties of optimal photonic crystals, Phys. Rev. Lett., 100, Article 153904 pp. (2008)
[35] Jensen, J. S.; Sigmund, O., Topology optimization for nano-photonics, Laser Photonics Rev., 5, 2, 308-321 (2011)
[36] Men, H.; Nguyen, N. C.; Freund, R. M.; Parrilo, P. A.; Peraire, J., Bandgap optimization of two-dimensional photonic crystals using semidefinite programming and subspace methods, J. Comput. Phys., 229, 3706-3725 (2010) · Zbl 1192.82104
[37] Men, H.; Nguyen, N. C.; Freund, R. M.; Lim, K. M.; Parrilo, P. A.; Peraire, J., Design of photonic crystals with multiple and combined band gaps, Phys. Rev. E, 83, Article 046703 pp. (2011)
[38] Huang, X.; Zuo, Z. H.; Xie, Y. M., Evolutionary topology optimization of vibrating continuum structures for natural frequencies, Comput. Struct., 88, 357-364 (2010)
[39] Huang, X.; Li, Y.; Zhou, S. W.; Xie, Y. M., Topology optimization of compliant mechanisms with desired structural stiffness, Eng. Struct., 79, 13-21 (2014)
[40] Huang, X.; Xie, Y. M., Evolutionary topology optimization of geometrically and materially nonlinear structures under prescribed design load, Struct. Eng. Mech., 34, 5, 581-595 (2010)
[41] Huang, X.; Xie, Y. M.; Lu, G., Topology optimization of energy absorption structures, Int. J. Crashworthiness, 12, 6, 663-675 (2007)
[42] Huang, X.; Radman, A.; Xie, Y. M., Topological design of microstructures of cellular materials for maximum bulk or shear modulus, Comput. Mater. Sci., 50, 1861-1870 (2011)
[43] Huang, X.; Xie, Y. M.; Jia, B.; Li, Q.; Zhou, S. W., Evolutionary topology optimization of periodic composites for extremal magnetic permeability and electrical permittivity, Struct. Multidiscip. Optim., 46, 385-398 (2012) · Zbl 1274.78096
[44] Kittel, C., Introduction to Solid State Physics (1996), Wiley: Wiley New York
[45] Jin, J., The Finite Element Method in Electromagnetics (2002), John Wiley & Sons: John Wiley & Sons New York · Zbl 1001.78001
[46] Seyranian, A. P.; Lund, E.; Olhoff, N., Multiple eigenvalues in structural optimization problems, Struct. Optim., 8, 4, 207-227 (1994)
[47] Jensen, J. S.; Pedersen, N. L., On maximal eigenfrequency separation in two-materials structures: the 1D and 2D scalar cases, J. Sound Vib., 289, 967-986 (2006)
[48] Du, J.; Olhoff, N., Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps, Struct. Multidiscip. Optim., 34, 91-110 (2007) · Zbl 1273.74398
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.