×

Multiple backward Schramm-Loewner evolution and coupling with Gaussian free field. (English) Zbl 1479.60171

Summary: It is known that a backward Schramm-Loewner evolution (SLE) is coupled with a free boundary Gaussian free field (GFF) with boundary perturbation to give conformal welding of quantum surfaces. Motivated by a generalization of conformal welding for quantum surfaces with multiple marked boundary points, we propose a notion of multiple backward SLE. To this aim, we investigate the commutation relation between two backward Loewner chains, and consequently, we find that the driving process of each backward Loewner chain has to have a drift term given by logarithmic derivative of a partition function, which is determined by a system of Belavin-Polyakov-Zamolodchikov-like equations so that these Loewner chains are commutative. After this observation, we define a multiple backward SLE as a tuple of mutually commutative backward Loewner chains. It immediately follows that each backward Loewner chain in a multiple backward SLE is obtained as a Girsanov transform of a backward SLE. We also discuss coupling of a multiple backward SLE with a GFF with boundary perturbation and find that a partition function and a boundary perturbation are uniquely determined so that they are coupled with each other.

MSC:

60J67 Stochastic (Schramm-)Loewner evolution (SLE)
60D05 Geometric probability and stochastic geometry
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
60K35 Interacting random processes; statistical mechanics type models; percolation theory

References:

[1] Bauer, M.; Bernard, D., Conformal field theories of stochastic Loewner evolutions, Commun. Math. Phys., 239, 493-521 (2003) · Zbl 1046.81091 · doi:10.1007/s00220-003-0881-x
[2] Bauer, M.; Bernard, D., Conformal transformations and the SLE partition function martingale, Ann. Henri Poincaré, 5, 289-326 (2004) · Zbl 1088.81083 · doi:10.1007/s00023-004-0170-z
[3] Bauer, M.; Bernard, D.; Kytölä, K., Multiple Schramm-Loewner evolutions and statistical mechanics martingales, J. Stat. Phys., 120, 1125-1163 (2005) · Zbl 1094.82016 · doi:10.1007/s10955-005-7002-5
[4] Berestycki, N.: Introduction to the Gaussian free field and Liouville quantum gravity. Available at https://homepage.univie.ac.at/nathanael.berestycki/articles.html (2016)
[5] Bauer, R.; Friedrich, R., On chordal and bilateral SLE in multiply connected domains, Math. Z., 258, 241-265 (2008) · Zbl 1130.30006 · doi:10.1007/s00209-006-0041-z
[6] Byun, S.-S., Kang, N.-G., Tak, H.-J.: Annulus SLE partition functions and martingale-observables. arXiv:1806.03638 (2018)
[7] Beffara, V.; Peltola, E.; Wu, H., On the uniqueness of global multiple SLEs, Ann. Probab., 49, 400-434 (2021) · Zbl 1478.60225 · doi:10.1214/20-AOP1477
[8] Belavin, AA; Polyakov, AM; Zamolodchikov, AB, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B, 241, 333-380 (1984) · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[9] Chen, Z-Q; Fukushima, M., Stochastic Komatu-Loewner evolutions and BMD domain constant, Stoch. Process. Appl., 128, 545-594 (2018) · Zbl 1380.60076 · doi:10.1016/j.spa.2017.05.007
[10] David, F.; Kupiainen, A.; Rhodes, R.; Vargas, V., Liouville quantum gravity on the Riemann sphere, Commun. Math. Phys., 342, 869-907 (2016) · Zbl 1336.83042 · doi:10.1007/s00220-016-2572-4
[11] Duplantier, B., Miller, J., Sheffield, S.: Liouville quantum gravity as a mating of trees. arXiv:1409.7055 (2014)
[12] David, F.; Rhodes, R.; Vargas, V., Liouville quantum gravity on complex tori, J. Math. Phys., 57, 022302 (2016) · Zbl 1362.81082 · doi:10.1063/1.4938107
[13] Duplantier, B.; Sheffield, S., Duality and Knizhnik-Polyakov-Zamolodchikov relation in Liouville quantum gravity, Phys. Rev. Lett., 102, 150603 (2009) · doi:10.1103/PhysRevLett.102.150603
[14] Duplantier, B.; Sheffield, S., Liouville quantum gravity and KPZ, Invent. Math., 185, 333-393 (2011) · Zbl 1226.81241 · doi:10.1007/s00222-010-0308-1
[15] Dubédat, J., Euler integrals for commuting SLEs, J. Stat. Phys., 123, 1183-1218 (2006) · Zbl 1113.82064 · doi:10.1007/s10955-006-9132-9
[16] Dubédat, J.: Commutation relations for Schramm-Loewner evolutions. Commun. Pure Appl. Math. LX, 1792-1847 (2007) · Zbl 1137.82009
[17] Dubédat, J., SLE and the free field: partition functions and couplings, J. Am. Math. Soc., 22, 995-1054 (2009) · Zbl 1204.60079 · doi:10.1090/S0894-0347-09-00636-5
[18] Dyson, FJ, A Brownian-motion model for the eigenvalues of a random matrix, J. Math. Phys., 3, 1191-1198 (1962) · Zbl 0111.32703 · doi:10.1063/1.1703862
[19] Flores, S.; Kleban, P., A solution space for a system of null-state partial differential equations, part I, Commun. Math. Phys., 333, 389-434 (2015) · Zbl 1314.35188 · doi:10.1007/s00220-014-2189-4
[20] Flores, S.; Kleban, P., A solution space for a system of null-state partial differential equations, part II, Commun. Math. Phys., 333, 435-481 (2015) · Zbl 1314.35189 · doi:10.1007/s00220-014-2185-8
[21] Flores, S.; Kleban, P., A solution space for a system of null-state partial differential equations, part III, Commun. Math. Phys., 333, 597-667 (2015) · Zbl 1311.35314 · doi:10.1007/s00220-014-2190-y
[22] Flores, S.; Kleban, P., A solution space for a system of null-state partial differential equations, part IV, Commun. Math. Phys., 333, 669-715 (2015) · Zbl 1314.35190 · doi:10.1007/s00220-014-2180-0
[23] Gwynne, E., Miller, J., Sheffield, S.: The Tutte embedding of the mated-CRT map converges to Liouville quantum gravity. arXiv:1705.11161 (2017)
[24] Graham, K., On multiple Schramm-Loewner evolutions, J. Stat. Mech., 2007, P03008 (2007) · Zbl 1456.60213 · doi:10.1088/1742-5468/2007/03/P03008
[25] Guillarmou, C.; Rhodes, R.; Vargas, V., Polyakov’s formulation of \(2d\) bosonic string theory, Publ. Math. lHES, 130, 111-185 (2019) · Zbl 1514.81216 · doi:10.1007/s10240-019-00109-6
[26] Hida, T.: Brownian Motion. Applications of Mathematics, vol. 11. Springer, New York, Heidelberg, Berlin (1980) · Zbl 0423.60063
[27] Huang, Y.; Rhodes, R.; Vargas, V., Liouville quantum gravity on the unit disk, Ann. Inst. H. Poincaré Probab. Stat., 54, 1694-1730 (2018) · Zbl 1404.60071 · doi:10.1214/17-AIHP852
[28] Huang, Y-Z, Differential equations and intertwining operators, Commun. Comtemp. Math., 07, 375-400 (2005) · Zbl 1070.17012 · doi:10.1142/S0219199705001799
[29] Izyurov, K.; Kytölä, K., Hadamard’s formula and couplings of SLEs with free field, Probab. Theory Relat. Fields, 155, 35-69 (2013) · Zbl 1269.60067 · doi:10.1007/s00440-011-0391-2
[30] Kang, N-G, Boundary behavior of SLE, J. Am. Math. Soc., 20, 185-210 (2007) · Zbl 1198.60043 · doi:10.1090/S0894-0347-06-00547-9
[31] Katori, M.; Koshida, K., Conformal welding problem, flow line problem, and multiple Schramm-Loewner evolution, J. Math. Phys., 61, 083301 (2020) · Zbl 1454.81194 · doi:10.1063/1.5145357
[32] Katori, M., Koshida, S., Gaussian free fields coupled with multiple SLEs driven by stochastic log-gases. In: Advanced Studies in Pure Mathematics (2020) · Zbl 1454.81194
[33] Katori, M., Koshida, S.: Three phases of multiple SLE driven by non-colliding Dyson’s Brownian motions. arXiv:2011.10291 (2020) · Zbl 1454.81194
[34] Kozdron, M., Lawler, G.: The configuration measure on mutually avoiding SLE paths. In: Universality and Renormalization. Volume 50 of Fields Institute Communications, pp. 199-224. American Mathematical Society, Providence (2007) · Zbl 1133.60023
[35] Knapp, A.W.: Representation theory of semisimple groups: an overview based on examples, volume 36 of Princeton Mathematical Series. Princeton University Press, Princeton (1986) · Zbl 0604.22001
[36] Koshida, S., Local martingales associated with Schramm-Loewner evolutions with internal symmetry, J. Math. Phys., 59, 101703 (2018) · Zbl 1402.60103 · doi:10.1063/1.5034416
[37] Kytölä, K.; Peltola, E., Pure partition functions of multiple SLEs, Commun. Math. Phys., 346, 237-292 (2016) · Zbl 1358.82012 · doi:10.1007/s00220-016-2655-2
[38] Kytölä, K.; Peltola, E., Conformally covariant boundary correlation functions with a quantum group, J. Eur. Math. Soc., 22, 55-118 (2020) · Zbl 1454.81112 · doi:10.4171/JEMS/917
[39] Kupiainen, A.; Rhodes, R.; Vargas, V., Local conformal structure of Liouville quantum gravity, Commun. Math. Phys., 371, 1005-1069 (2019) · Zbl 1480.83053 · doi:10.1007/s00220-018-3260-3
[40] Lawler, G., Partition functions, loop measure, and versions of SLE, J. Stat. Phys., 134, 813-837 (2009) · Zbl 1168.82006 · doi:10.1007/s10955-009-9704-6
[41] Lawler, GF, Multifractal analysis of the reverse flow for the Schramm-Loewner evolution, Prog. Probab., 61, 73-107 (2009) · Zbl 1191.60095
[42] Lind, J., Hölder regularity of the SLE trace, Trans. Am. Math. Soc., 360, 3557-3578 (2008) · Zbl 1141.60066 · doi:10.1090/S0002-9947-08-04327-4
[43] Miller, J.; Sheffield, S., Imaginary geometry I: interacting SLEs, Probab. Theory Relat. Fields, 164, 553-705 (2016) · Zbl 1336.60162 · doi:10.1007/s00440-016-0698-0
[44] Miller, J.; Sheffield, S., Imaginary geometry II: reversibility of \(SLE_{\kappa }(\rho_1,\rho_2)\) for \(\kappa \in (0,4)\), Ann. Probab., 44, 1647-1722 (2016) · Zbl 1344.60078 · doi:10.1214/14-AOP943
[45] Miller, J.; Sheffield, S., Imaginary geometry III: reversibility of \(SLE_{\kappa }\) for \(\kappa \in (4,8)\), Ann. Math., 184, 455-486 (2016) · Zbl 1393.60092 · doi:10.4007/annals.2016.184.2.3
[46] Miller, J.; Sheffield, S., Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees, Probab. Theory Relat. Fields, 169, 729-869 (2017) · Zbl 1378.60108 · doi:10.1007/s00440-017-0780-2
[47] Murayama, T., On the slit motion obeying chordal Komatu-Loewner equation with finite explosion time, J. Evol. Equ., 20, 233-255 (2020) · Zbl 1434.60232 · doi:10.1007/s00028-019-00519-3
[48] Mackey, B.; Zhan, D., Decomposition of backward SLE in the capacity parametrization, Stat. Probab. Lett., 146, 27-35 (2019) · Zbl 1442.60083 · doi:10.1016/j.spl.2018.10.021
[49] Polyakov, AM, Quantum geometry of bosonic strings, Phys. Lett. B, 103, 207-210 (1981) · doi:10.1016/0370-2693(81)90743-7
[50] Polyakov, AM, Quantum geometry of fermionic strings, Phys. Lett. B, 103, 211-213 (1981) · doi:10.1016/0370-2693(81)90744-9
[51] Peltola, E.; Wu, H., Global and local multiple SLE for \(\kappa \le 4\) and connection probabilities for level line of GFF, Commun. Math. Phys., 366, 469-536 (2019) · Zbl 1422.60142 · doi:10.1007/s00220-019-03360-4
[52] Qian, W.; Werner, W., Coupling the Gaussian free fields with free and with zero boundary conditions via common level lines, Commun. Math. Phys., 361, 53-80 (2018) · Zbl 1430.60064 · doi:10.1007/s00220-018-3159-z
[53] Rohde, S.; Schramm, O., Basic properties of SLE, Ann. Math., 161, 883-924 (2005) · Zbl 1081.60069 · doi:10.4007/annals.2005.161.883
[54] Roth, O.; Schleissinger, S., The Schramm-Loewner equation for multiple slits, J. Anal. Math., 131, 73-99 (2017) · Zbl 1383.30003 · doi:10.1007/s11854-017-0002-y
[55] Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and Liouville quantum gravity. In: Stochastic Processes and Random Matrices: Lecture Notes of the Les Houches Summer School: Volume 104, July 2015. Oxford University Press, Oxford (2017) · Zbl 1386.60139
[56] Rohde, S.; Zhan, D., Backward SLE and the symmetry of the welding, Probab. Theory Relat. Fields, 164, 815-863 (2016) · Zbl 1341.30012 · doi:10.1007/s00440-015-0620-1
[57] Schramm, O., Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math., 118, 221-288 (2000) · Zbl 0968.60093 · doi:10.1007/BF02803524
[58] Sheffield, S., Gaussian free fields for mathematicians, Probab. Theory Relat. Fields, 139, 521-541 (2007) · Zbl 1132.60072 · doi:10.1007/s00440-006-0050-1
[59] Sheffield, S., Conformal weldings of random surfaces: SLE and the quantum gravity zipper, Ann. Probab., 44, 3474-3545 (2016) · Zbl 1388.60144 · doi:10.1214/15-AOP1055
[60] Schramm, O.; Sheffield, S., Contour lines of the two-dimensional discrete Gaussian free field, Acta Math., 202, 21-137 (2009) · Zbl 1210.60051 · doi:10.1007/s11511-009-0034-y
[61] Schramm, O.; Sheffield, S., A contour line of the continuum Gaussian free field, Probab. Theory Relat. Fields, 157, 47-80 (2013) · Zbl 1331.60090 · doi:10.1007/s00440-012-0449-9
[62] Schramm, O.; Wilson, DB, SLE coordinate changes, New York J. Math., 11, 659-669 (2005) · Zbl 1094.82007
[63] Takebe, T., Dispersionless BKP hierarchy and quadrant Löwner equation, SIGMA, 10, 023 (2014) · Zbl 1337.37057
[64] Werner, W., Girsanov’s transformation for SLE \(( \kappa,\rho )\) processes, intersection exponents and hiding exponents, Ann. Fac. Sci. Toulouse Math., 13, 121-147 (2004) · Zbl 1059.60099 · doi:10.5802/afst.1066
[65] Zhan, D., Stochastic Loewner evolution in doubly connected domains, Probab. Theory Relat. Fields, 129, 340-380 (2004) · Zbl 1054.60104 · doi:10.1007/s00440-004-0343-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.