×

A solution space for a system of null-state partial differential equations. I. (English) Zbl 1314.35188

It is the first article from the series of works considering the partition function \(F\) for the Schramm-Löwner evolution (SLE) describing a variety of problems of mathematical statistical physics. This range of problems includes bond percolation, Ising and Potts models, etc. The main approach operates with the function \(F\) as a solution of \(2N+3\) partial differential equations (PDE) of \(2N\) variables: \(2N\) elliptic null-state PDE with independent variables, which are the results of the lattice vertices mapping into real numbers, and three conformal Ward identities. The number \(2N\) corresponds to number of polygon’s edges, where the process occurs. This part of the series presents a general introduction into the problem and the proof of the fact that the dimension of PDE solutions is less or equal to the \(N\)th Catalan number.
For Part II, III and IV see [the authors, ibid. 333, No. 1, 435–481 (2015; Zbl 1314.35189); ibid. 333, No. 2, 597–667 (2015; Zbl 1311.35314); ibid. 333, No. 2, 669–715 (2015; Zbl 1314.35190)].

MSC:

35Q82 PDEs in connection with statistical mechanics
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
60J67 Stochastic (Schramm-)Loewner evolution (SLE)
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B27 Critical phenomena in equilibrium statistical mechanics
82B43 Percolation

References:

[1] Cardy J.: Critical percolation in finite geometries. J. Phys. A Math. Gen. 25, L201-L206 (1992) · Zbl 0965.82501 · doi:10.1088/0305-4470/25/4/009
[2] Belavin A.A., Polyakov A.M., Zamolodchikov A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333-380 (1984) · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[3] Di Francesco P., Mathieu R., Sénéchal D.: Conformal Field Theory. Springer, New York (1997) · Zbl 0869.53052 · doi:10.1007/978-1-4612-2256-9
[4] Henkel M.: Conformal Invariance and Critical Phenomena. Springer, Berlin (1999) · Zbl 1053.82001 · doi:10.1007/978-3-662-03937-3
[5] Cardy J.: Conformal invariance and surface critical behavior. Nucl. Phys. B 240, 514-532 (1984) · doi:10.1016/0550-3213(84)90241-4
[6] Simmons J.J.H., Kleban P.: Complete conformal field theory solution of a chiral six-point correlation function. J. Phys. A Math. Theor. 44, 315403 (2011) · Zbl 1225.81126 · doi:10.1088/1751-8113/44/31/315403
[7] Simmons J.J.H., Kleban P., Flores S.M., Ziff R.M.: Cluster densities at 2-D critical points in rectangular geometries. J. Phys. A Math. Theor. 44, 385002 (2011) · Zbl 1227.82033 · doi:10.1088/1751-8113/44/38/385002
[8] Flores, S.M., Simmons, J.J.H., Kleban, P., Ziff R.M.: Partition functions and crossing probabilities for critical systems inside polygons (in preparation) · Zbl 1360.82018
[9] Gruzberg I.A.: Stochastic geometry of critical curves, Schramm-Löwner evolutions, and conformal field theory. J. Phys. A 39, 12601-12656 (2006) · Zbl 1111.81135 · doi:10.1088/0305-4470/39/41/S01
[10] Rushkin I., Bettelheim E., Gruzberg I.A., Wiegmann P.: Critical curves in conformally invariant statistical systems. J. Phys. A 40, 2165-2195 (2007) · Zbl 1160.82324 · doi:10.1088/1751-8113/40/9/020
[11] Cardy J.: Boundary conditions, fusion rules, and the Verlinde formula. Nucl. Phys. B 324, 581-596 (1989) · doi:10.1016/0550-3213(89)90521-X
[12] Langlands R., Pouliot P., Saint-Aubin Y.: Conformal invariance in two-dimensional percolation. Bull. Am. Math. Soc. 30, 1-61 (1994) · Zbl 0794.60109 · doi:10.1090/S0273-0979-1994-00456-2
[13] Morse P.M., Feshbach H.: Methods of Theoretical Physics. McGraw-Hill, New York (1953) · Zbl 0051.40603
[14] Ziff R.M.: Effective boundary extrapolation length to account for finite-size effects in the percolation crossing function. Phys. Rev. E 54, 2547-2554 (1996) · Zbl 1022.81800 · doi:10.1103/PhysRevE.54.2547
[15] Langlands R.P., Pichet C., Pouliot P., Saint-Aubin Y.: On the universality of crossing probabilities in two-dimensional percolation. J. Stat. Phys. 67, 553-574 (1992) · Zbl 0925.82109 · doi:10.1007/BF01049720
[16] Smirnov S.: Critical percolation in the plane. C. R. Acad. Sci. Paris Sr. I Math. 333, 239-244 (2001) · Zbl 0985.60090 · doi:10.1016/S0764-4442(01)01991-7
[17] Watts G.M.T.: A crossing probability for percolation in two dimensions. J. Phys. A 29, L363-L368 (1996) · Zbl 0904.60078 · doi:10.1088/0305-4470/29/14/002
[18] Simmons J.J.H., Kleban P., Ziff R.M.: Percolation crossing formulas and conformal field theory. J. Phys. A 40, F771 (2007) · Zbl 1147.82335 · doi:10.1088/1751-8113/40/31/F03
[19] Simmons J.J.H., Kleban P., Ziff R.M.: Anchored critical percolation clusters and 2-D electrostatics. Phys. Rev. Lett. 97, 115702 (2006) · doi:10.1103/PhysRevLett.97.115702
[20] Simmons, J.J.H., Kleban, P., Dahlberg, K., Ziff, R. M.: The density of critical percolation clusters touching the boundaries of strips and squares. J. Stat. Mech. P06012 (2007) · Zbl 1456.82477
[21] Simmons, J.J.H., Kleban, P., Ziff, R.M.: Factorization of percolation density correlation functions for clusters touching the sides of a rectangle. J. Stat. Mech. P02067 (2009) · Zbl 1456.82478
[22] Flores S.M., Kleban P., Ziff R.M.: Cluster pinch-point densities in polygons. J. Phys. A Math. Theor. 45, 505002 (2012) · Zbl 1257.82052 · doi:10.1088/1751-8113/45/50/505002
[23] Wu F.Y.: The Potts model. Rev. Mod. Phys. 54, 235-268 (1982) · doi:10.1103/RevModPhys.54.235
[24] Fortuin C.M., Kasteleyn P.W.: On the random cluster model I. Introduction and relation to other models. Physica D 57, 536-564 (1972)
[25] Dubédat, J.: Sur le processus de Schramm-Löwner et la limite continue de la percolation critique plane. Ph.D. thesis, L’Université Paris (2004)
[26] Flores, S.M., Kleban, P.: A solution space for a system of null-state partial differential equations II. Commun. Math. Phys. Preprint: arXiv:1404.0035 (2014, to appear) · Zbl 1314.35189
[27] Flores, S.M., Kleban, P.: A solution space for a system of null-state partial differential equations III. Commun. Math. Phys. Preprint: arXiv:1303.7182 (2013 to appear) · Zbl 1311.35314
[28] Flores, S.M., Kleban, P.: A solution space for a system of null-state partial differential equations IV. Commun. Math. Phys. Preprint: arXiv:1405.2747 (2014 to appear) · Zbl 1314.35190
[29] Dubédat J.: Euler integrals for commuting SLEs. J. Stat. Phys. 123, 1183-1218 (2006) · Zbl 1113.82064 · doi:10.1007/s10955-006-9132-9
[30] Simmons J.J.H.: Logarithmic operator intervals in the boundary theory of critical percolation. J. Phys. A Math. Theor. 46, 494015 (2013) · Zbl 1294.82022 · doi:10.1088/1751-8113/46/49/494015
[31] Dotsenko V.S., Fateev V.A. (1984) Conformal algebra and multipoint correlation functions in 2D statistical models. Nucl. Phys. B 240:312-348
[32] Dotsenko, V.S., Fateev, V.A.: Four-point correlation functions and the operator algebra in 2D conformal invariant theories with central charge \[{c \le 1}\] c≤1. Nucl. Phys. B 251, 691-673 (1985) · Zbl 0904.60078
[33] Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, New York (1983) · Zbl 0361.35003 · doi:10.1007/978-3-642-61798-0
[34] Dubédat J.: Commutation relations for SLE. Commun. Pure Appl. Math. 60, 1792-1847 (2007) · Zbl 1137.82009 · doi:10.1002/cpa.20191
[35] Bauer M., Bernard D., Kytölä K.: Multiple Schramm-Löwner evolutions and statistical mechanics martingales. J. Stat. Phys. 120, 1125 (2005) · Zbl 1094.82016 · doi:10.1007/s10955-005-7002-5
[36] Graham, K.: On multiple Schramm-Löwner evolutions. J. Stat. Mech. P03008 (2007) · Zbl 1456.60213
[37] Kozdron M.J., Lawler G.: The configurational measure on mutually avoiding SLE paths. Fields Inst. Commun. 50, 199-224 (2007) · Zbl 1133.60023
[38] Sakai K.: Multiple Schramm-Löwner evolutions for conformal field theories with Lie algebra symmetries. Nucl. Phys. B 867, 429-447 (2013) · Zbl 1262.81165 · doi:10.1016/j.nuclphysb.2012.09.019
[39] Rohde S., Schramm O.: Basic properties of SLE. Ann. Math. 161, 879-920 (2005) · Zbl 1081.60069 · doi:10.4007/annals.2005.161.883
[40] Kager W., Nienhuis B., Kadanoff L.P.: A guide to stochastic Löwner evolution and its applications. J. Stat. Phys. 115, 1149-1229 (2004) · Zbl 1157.82327 · doi:10.1023/B:JOSS.0000028058.87266.be
[41] Lawler G.: Conformally Invariant Processes in the Plane. American Mathematical Society, Providence (2005) · Zbl 1074.60002
[42] Lawler G.: A self-avoiding walk. Duke Math. J. 47, 655-694 (1980) · Zbl 0445.60058 · doi:10.1215/S0012-7094-80-04741-9
[43] Lawler G., Schramm O., Werner W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32, 939-995 (2004) · Zbl 1126.82011 · doi:10.1214/aop/1079021469
[44] Madra G., Slade G.: The Self-Avoiding Walk. Birkhäuser, Boston (1996) · Zbl 0872.60076 · doi:10.1007/978-1-4612-4132-4
[45] Lawler, G., Schramm, O., Werner, W.: On the scaling limit of planar self-avoiding walk. In: Lapidus, M.L., Frankenhuysen, M.V. (eds.) Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, Part 2. American Mathematical Society, Providence (2004) · Zbl 1069.60089
[46] Smirnov S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. 172, 1435-1467 (2010) · Zbl 1200.82011 · doi:10.4007/annals.2010.172.1441
[47] Duminil-Copin, H., Smirnov, S.: Conformal invariance of lattice models. In: Ellwood, D., Newman, C., Sidoravicius, V., Werner, W. (eds.) Probability and Statistical Physics in Two and More Dimensions. Clay Mathematics Proceedings, vol. 15, pp. 213-276 (2012) · Zbl 1317.60002
[48] Schramm O., Sheffield S.: The harmonic explorer and its convergence to SLE4. Ann. Probab. 33, 2127-2148 (2005) · Zbl 1095.60007 · doi:10.1214/009117905000000477
[49] Grimmett G.: Percolation. Springer, New York (1989)
[50] Weinrib A., Trugman S.A.: A new kinetic walk and percolation perimeters. Phys. Rev. B 31, 2993-2997 (1985) · doi:10.1103/PhysRevB.31.2993
[51] Bauer M., Bernard D.: Conformal field theories of stochastic Löwner evolutions. Commun. Math. Phys. 239, 493-521 (2003) · Zbl 1046.81091 · doi:10.1007/s00220-003-0881-x
[52] Bers, L., Schechter, M.: Elliptic equations. In: Bers, L., John, F., Schechter, M. (eds.) Partial Differential Equations. American Mathematical Society, Providence (1964) · Zbl 0128.09404
[53] Folland, G.: Fourier Analysis and its Applications. Wadsworth & Brooks/Cole Advanced Books and Software, Pacific Grove (1992) · Zbl 0786.42001
[54] Di Francesco P., Golinelli O., Guitter E.: Meanders and the Temperley-Lieb algebra. Commun. Math. Phys. 186, 1-59 (1997) · Zbl 0873.05008 · doi:10.1007/BF02885671
[55] Horn R., Johnson C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012) · doi:10.1017/CBO9781139020411
[56] Gurarie V.: Logarithmic operators in conformal field theory. Nucl. Phys. B 410, 535-549 (1993) · Zbl 0990.81686 · doi:10.1016/0550-3213(93)90528-W
[57] Mathieu P., Ridout D.: From percolation to logarithmic conformal field theory. Phys. Lett. B 657:120-129 (2007) · Zbl 1246.81181
[58] Protter M.H., Weinberger H.F.: Maximum Principles in Differential Equations. Springer, New York (1984) · Zbl 0549.35002 · doi:10.1007/978-1-4612-5282-5
[59] Kytölä, K., Peltola, E.: Pure geometries of multiple SLEs (in preparation) · Zbl 1358.82012
[60] Kytölä, K., Peltola, E.: Conformally covariant boundary correlation functions with a quantum group, Preprint. arXiv:1408.1384 (2014) · Zbl 1454.81112
[61] Friedan D., Qiu Z., Shenker S.: Conformal invariance, unitarity, and critical exponents in two dimensions. Phys. Rev. Lett. 52, 1575-1578 (1984) · Zbl 0579.05053 · doi:10.1103/PhysRevLett.52.1575
[62] Dotsenko V.S.: Critical behavior and associated conformal algebra of the Z3 Potts model. Nucl. Phys. B 235, 54-74 (1984) · doi:10.1016/0550-3213(84)90148-2
[63] Saleur H., Bauer M.: On some relations between local height probabilities and conformal invariance. Nucl. Phys. B 320, 591-624 (1989) · doi:10.1016/0550-3213(89)90014-X
[64] Bauer, M., Bernard, D., Houdayer, J.: Dipolar stochastic Löwner evolutions. J. Stat. Mech. P03001 (2005) · Zbl 1456.82713
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.