×

Global and local multiple SLEs for \(\kappa\leq4\) and connection probabilities for level lines of GFF. (English) Zbl 1422.60142

Summary: This article pertains to the classification of multiple Schramm-Loewner evolutions (SLE). We construct the pure partition functions of multiple \(\mathrm{SLE}_\kappa\) with \(\kappa\in(0,4]\) and relate them to certain extremal multiple SLE measures, thus verifying a conjecture from M. Bauer et al. [J. Stat. Phys. 120, No. 5–6, 1125–1163 (2005; Zbl 1094.82016)] and K. Kytölä and the first author [Commun. Math. Phys. 346, No. 1, 237–292 (2016; Zbl 1358.82012)]. We prove that the two approaches to construct multiple SLEs – the global, configurational construction of M. J. Kozdron and G. F. Lawler [Fields Inst. Commun. 50, 199–224 (2007; Zbl 1133.60023)] and G. F. Lawler [J. Stat. Phys. 134, No. 5–6, 813–837 (2009; Zbl 1168.82006)] and the local, growth process construction of Bauer et al. [loc. cit.], J. Dubédat [Commun. Pure Appl. Math. 60, No. 12, 1792–1847 (2007; Zbl 1137.82009)], K. Graham [“On multiple Schramm-Loewner evolutions”, J. Stat. Mech. Theory 2007, No. 3, 03008 (2007)] and Kytölä and Peltola [loc. cit.] – agree. The pure partition functions are closely related to crossing probabilities in critical statistical mechanics models. With explicit formulas in the special case of \(\kappa=4\), we show that these functions give the connection probabilities for the level lines of the Gaussian free field (GFF) with alternating boundary data. We also show that certain functions, known as conformal blocks, give rise to multiple \(\mathrm{SLE}_4\) that can be naturally coupled with the GFF with appropriate boundary data.

MSC:

60J67 Stochastic (Schramm-)Loewner evolution (SLE)
60G15 Gaussian processes
82B05 Classical equilibrium statistical mechanics (general)

References:

[1] Bauer M., Bernard D.: Conformal field theories of stochastic Loewner evolutions. Commun. Math. Phys. 239(3), 493-521 (2003) · Zbl 1046.81091
[2] Bauer M., Bernard D.: Conformal transformations and the SLE partition function martingale. Ann. Henri Poincaré 5(2), 289-326 (2004) · Zbl 1088.81083
[3] Bauer M., Bernard D., Kytölä K.: Multiple Schramm-Loewner evolutions and statistical mechanics martingales. J. Stat. Phys. 120(5-6), 1125-1163 (2005) · Zbl 1094.82016
[4] Benoist, S., Hongler, C.: The scaling limit of critical Ising interfaces is CLE(3). Ann. Probab. arXiv:1604.06975, (2019) (to appear) · Zbl 1467.60061
[5] Beffara, V., Peltola, E., Wu, H.: On the uniqueness of global multiple SLEs. Preprint in arXiv:1801.07699, (2018) · Zbl 1478.60225
[6] Belavin A.A., Polyakov A.M., Zamolodchikov A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241(2), 333-380 (1984) · Zbl 0661.17013
[7] Belavin A.A., Polyakov A.M., Zamolodchikov A.B.: Infinite conformal symmetry of critical fluctuations in two dimensions. J. Stat. Phys. 34(5-6), 763-774 (1984)
[8] Camia F., Newman C.M.: Critical percolation exploration path and SLE6: a proof of convergence. Probab. Theory Relat. Fields 139(3-4), 473-519 (2007) · Zbl 1126.82007
[9] Cardy J.L.: Conformal invariance and surface critical behavior. Nucl. Phys. B 240(4), 514-532 (1984)
[10] Cardy J.L.: Boundary conditions, fusion rules and the Verlinde formula. Nucl. Phys. B 324(3), 581-596 (1989)
[11] Dmitry C., Hugo D.-C., Clément H., Antti K., Stanislav S.: Convergence of Ising interfaces to Schramm’s SLE curves. C. R. Math. 352(2), 157-161 (2014) · Zbl 1294.82007
[12] Chelkak D., Hongler C., Izyurov K.: Conformal invariance of spin correlations in the planar Ising model. Ann. Math. 181(3), 1087-1138 (2015) · Zbl 1318.82006
[13] Chelkak D., Izyurov K.: Holomorphic spinor observables in the critical Ising model. Commun. Math. Phys. 322(2), 303-332 (2013) · Zbl 1277.82010
[14] Chelkak D., Smirnov S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189(3), 515-580 (2012) · Zbl 1257.82020
[15] Di Francesco P., Mathieu P.: Sénéchal David.: Conformal Field Theory. Springer, New York (1997) · Zbl 0869.53052
[16] Dotsenko V.S., Fateev V.A.: Four-point correlation functions and the operator algebra in 2D conformal invariant theories with \[{c \geq 1}\] c≥1. Nucl. Phys. B 251, 691-734 (1985)
[17] Dubédat J.: Euler integrals for commuting SLEs. J. Stat. Phys. 123(6), 1183-1218 (2006) · Zbl 1113.82064
[18] Dubédat J.: Commutation relations for Schramm-Loewner evolutions. Commun. Pure Appl. Math. 60(12), 1792-1847 (2007) · Zbl 1137.82009
[19] Dubédat J.: SLE and the free field: partition functions and couplings. J. Am. Math. Soc. 22(4), 995-1054 (2009) · Zbl 1204.60079
[20] Dubédat J.: SLE and Virasoro representations: localization. Commun. Math. Phys. 336(2), 695-760 (2015) · Zbl 1318.82007
[21] Dubédat J.: SLE and Virasoro representations: fusion. Commun. Math. Phys. 336(2), 761-809 (2015) · Zbl 1319.81073
[22] Duplantier B., Saleur H.: Exact critical properties of two-dimensional dense self-avoiding walks. Nucl. Phys. B 290, 291-326 (1987)
[23] Duplantier B., Sheffield S.: Liouville quantum gravity and KPZ. Invent. Math. 185(2), 333-393 (2011) · Zbl 1226.81241
[24] Felder G., Fröhlich J., Keller G.: Braid matrices and structure constants for minimal conformal models. Commun. Math. Phys. 124(4), 647-664 (1989) · Zbl 0696.17009
[25] Field L.S., Lawler G.F.: Reversed radial SLE and the Brownian loop measure. J. Stat. Phys. 150, 1030-1062 (2013) · Zbl 1276.60091
[26] Flores S.M., Kleban P.: A solution space for a system of null-state partial differential equations: part 1. Commun. Math. Phys., 333(1):389-434 (2015) · Zbl 1314.35188
[27] Flores S.M., Kleban P.: A solution space for a system of null-state partial differential equations: part 2. Commun. Math. Phys. 333(1), 435-481 (2015) · Zbl 1314.35189
[28] Flores S.M., Kleban P.: A solution space for a system of null-state partial differential equations: part 3. Commun. Math. Phys. 333(2), 597-667 (2015) · Zbl 1311.35314
[29] Flores S.M., Kleban Peter A.: solution space for a system of null-state partial differential equations: part 4. Commun. Math. Phys. 333(2), 669-715 (2015) · Zbl 1314.35190
[30] Flores, Steven M., Peltola, Eveliina.: Monodromy invariant CFT correlation functions of first column Kac operators. In preparation.
[31] Flores, S.M., Simmons, J.J.H., Kleban, P.: Multiple-SLE \[{_\kappa}\] κ connectivity weights for rectangles, hexagons, and octagons. Preprint in arXiv:1505.07756, (2015)
[32] Flores S.M., Simmons Jacob J.H., Kleban P., Ziff R.M.: A formula for crossing probabilities of critical systems inside polygons. J. Phys. A 50(6), 064005 (2017) · Zbl 1360.82018
[33] Roland Friedrich. On connections of conformal field theory and stochastic Loewner evolution. Preprint in arXiv:math-ph/0410029, (2004)
[34] Friedrich R., Kalkkinen J.: On conformal field theory and stochastic Loewner evolution. Nucl. Phys. B 687(3), 279-302 (2004) · Zbl 1149.81352
[35] Friedrich R., Werner W.: Conformal restriction, highest weight representations and SLE. Commun. Math. Phys. 243(1), 105-122 (2003) · Zbl 1030.60095
[36] Graham, K.: On multiple Schramm-Loewner evolutions. J. Stat. Mech. Theory Exp. 2007(3):P03008 (2007) · Zbl 1456.60213
[37] Hongler C., Kytölä K.: Ising interfaces and free boundary conditions. J. Am. Math. Soc. 26(4), 1107-1189 (2013) · Zbl 1284.82021
[38] Hongler C., Smirnov S.: The energy density in the planar Ising model. Acta Math. 211(2), 191-225 (2013) · Zbl 1287.82007
[39] Hörmander L.: Hypoelliptic second-order differential equations. Acta Math. 119, 147-171 (1967) · Zbl 0156.10701
[40] Hörmander, L.: The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, Volume 256 of Grundlehren der mathematischen Wissenschaften, 2nd edn. Springer, Berlin (1990) · Zbl 0712.35001
[41] Izyurov K.: Smirnov’s observable for free boundary conditions, interfaces and crossing probabilities. Commun. Math. Phys. 337(1), 225-252 (2015) · Zbl 1318.82010
[42] Izyurov K.: Critical Ising interfaces in multiply-connected domains. Probab. Theory Relat. Fields 167(1), 379-415 (2017) · Zbl 1364.82012
[43] Jahangoshahi M., Lawler Gregory F.: On the smoothness of the partition function for multiple Schramm-Loewner evolutions. J. Stat. Phys., 173(5):1353-1368 (2018) · Zbl 1403.60070
[44] Kenyon R.W.: Height fluctuations in the honeycomb dimer model. Commun. Math. Phys. 281(3), 675-709 (2008) · Zbl 1157.82028
[45] Karrila, A., Kytölä, K., Peltola, E.: Boundary correlations in planar LERW and UST. Preprint in arXiv:1702.03261, (2017) · Zbl 1441.82023
[46] Karrila, Alex, Kytölä, Kalle.: and Eveliina Peltola. Conformal blocks, q-combinatorics, and quantum group symmetry. Ann. Henri Poincaré D. arXiv:1709.00249, (2019) (to appear) · Zbl 1432.81054
[47] Kozdron M.J., Lawler G.F.: Estimates of random walk exit probabilities and application to loop-erased random walk. Electron. J. Probab. 10(44), 1442-1467 (2005) · Zbl 1110.60046
[48] Kozdron, M.J., Lawler, G.F.: The configurational measure on mutually avoiding SLE paths. In: Universality and Renormalization, Volume 50 of Fields Institute Communications, pp. 199-224. American Mathematical Society, Providence (2007) · Zbl 1133.60023
[49] Kontsevich M.: CFT, SLE, and phase boundaries. Oberwolfach Arbeitstagung, (2003)
[50] Kytölä K., Peltola E.: Pure partition functions of multiple SLEs. Commun. Math. Phys. 346(1), 237-292 (2016) · Zbl 1358.82012
[51] Kytölä, Kalle, Peltola, Eveliina.: Conformally covariant boundary correlation functions with a quantum group. To appear in J. Eur. Math. Soc., (2018). Preprint in arXiv:1408.1384 · Zbl 1454.81112
[52] Kemppainen A., Smirnov S.: Configurations of FK Ising interfaces and hypergeometric SLE. Math. Res. Lett. 25(3), 875-889 (2018) · Zbl 1418.82002
[53] Kenyon R.W., Wilson D.B.: Boundary partitions in trees and dimers. Trans. Am. Math. Soc. 363(3), 1325-1364 (2011) · Zbl 1230.60009
[54] Kenyon R.W., Wilson D.B.: Double-dimer pairings and skew Young diagrams. Electron. J. Combin. 18(1), 130-142 (2011) · Zbl 1247.05025
[55] Kytölä K.: Virasoro module structure of local martingales of SLE variants. Rev. Math. Phys. 19(5), 455-509 (2007) · Zbl 1177.82055
[56] Lawler, G.F.: Conformally Invariant Processes in the Plane, Volume 114 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2005) · Zbl 1074.60002
[57] Lawler G.F.: Partition functions, loop measure, and versions of SLE. J. Stat. Phys. 134(5-6), 813-837 (2009) · Zbl 1168.82006
[58] Lawler, Gregory F.: Schramm-Loewner evolution (SLE). In: Sheffield, S., Spencer, T. (eds.) Statistical Mechanics, Volume 16 of AMS IAS/Park City Mathematics Series (2009) · Zbl 1180.82002
[59] Lawler, G.F.: Defining SLE in multiply connected domains with the Brownian loop measure. Preprint in arXiv:1108.4364, (2011)
[60] Lawler G.F., Schramm O., Werner W.: Conformal restriction: the chordal case. J. Am. Math. Soc. 16(4), 917- (2003) · Zbl 1030.60096
[61] Lawler G.F., Schramm O., Werner W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32(1B), 939-995 (2004) · Zbl 1126.82011
[62] Lawler G.F., Werner W.: The Brownian loop soup. Probab. Theory Relat. Fields 128(4), 565-588 (2004) · Zbl 1049.60072
[63] Lenells Jonatan, Viklund Fredrik Coulomb gas integrals for commuting SLEs: Schramm’s formula and Green’s function. Preprint in arXiv:1701.03698, (2017)
[64] Miller J., Sheffield S.: Imaginary geometry I: interacting SLEs. Probab. Theory Relat. Fields 164(3-4), 553-705 (2016) · Zbl 1336.60162
[65] Nienhuis, B.: Coulomb gas formulation of two-dimensional phase transitions. In Domb, C., Lebowitz, J.L. (eds.) Volume 11 of Phase Transitions and Critical Phenomena, pp. 1-53. Academic Press, London (1987)
[66] Peltola, E., Wu, H.: Crossing probabilities of multiple Ising interfaces. Preprint in arXiv:1808.09438 (2018) · Zbl 1520.82015
[67] Ribault, S.: Conformal field theory on the plane. Preprint in arXiv:1406.4290 (2014)
[68] Rohde S., Schramm O.: Basic properties of SLE. Ann. Math. 161(2), 883-924 (2005) · Zbl 1081.60069
[69] Revuz, D., Yor, M.: Continuous martingales and Brownian motion, volume 293 of Grundlehren der mathematischen Wissenschaften. Springer, Berlin Heidelberg, 3rd edn (1999) · Zbl 0917.60006
[70] Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics, 2nd edn. McGeaw-Hill (1991) · Zbl 0867.46001
[71] Schramm O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118, 221-288 (2000) · Zbl 0968.60093
[72] Schramm O., Sheffield S.: Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202(1), 21-137 (2009) · Zbl 1210.60051
[73] Schramm O., Sheffield S.: A contour line of the continuum Gaussian free field. Probab. Theory Relat. Fields 157(1-2), 47-80 (2013) · Zbl 1331.60090
[74] Schramm, O., Wilson, D.B. (2005) SLE coordinate changes. New York J. Math. 11, 659-669 (electronic) · Zbl 1094.82007
[75] Shigechi K., Zinn-Justin P.: Path representation of maximal parabolic Kazhdan-Lusztig polynomials. J. Pure Appl. Algebra 216(11), 2533-2548 (2012) · Zbl 1262.20006
[76] Sheffield S.: Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139(3-4), 521-541 (2007) · Zbl 1132.60072
[77] Smirnov S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333(3), 239-244 (2001) · Zbl 0985.60090
[78] Smirnov, S.: Towards conformal invariance of 2D lattice models. In International Congress of Mathematicians. Vol. II, pp. 1421-1451. Eur. Math. Soc. Zürich (2006) · Zbl 1112.82014
[79] Smirnov S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. 172(2), 1435-1467 (2010) · Zbl 1200.82011
[80] Stroock, D.W.: An introduction to partial differential equations for probabilists, volume 112 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2008) · Zbl 1145.35002
[81] Tao, T.: An epsilon of room, I: Real analysis. Pages from year three of a mathematical blog, volume 117 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2009) · Zbl 1216.46002
[82] Werner W.: Girsanov’s transformation for \[{{\rm SLE}(\kappa,\rho)}\] SLE(κ,ρ) processes, intersection exponents and hiding exponents. Ann. Fac. Sci. Toulouse Math. (6) 13(1), 121-147 (2004) · Zbl 1059.60099
[83] Wu, H.: Hypergeometric SLE: conformal Markov characterization and applications. Preprint in arXiv:1703.02022 (2017) · Zbl 1473.82021
[84] Wang M., Wu H.: Level lines of Gaussian free field I: zero-boundary GFF. Stoch. Process. Appl. 127(4), 1045-1124 (2017) · Zbl 1358.60066
[85] Wu H.: Alternating arm exponents for the critical planar Ising model. Ann. Probab. 46(5), 2863-2907 (2018) · Zbl 1428.60119
[86] Zhan D.: Reversibility of chordal SLE. Ann. Probab. 36(4), 1472-1494 (2008) · Zbl 1157.60051
[87] Zhan D.: The scaling limits of planar LERW in finitely connected domains. Ann. Probab. 36(2), 467-529 (2008) · Zbl 1153.60057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.