×

Stochastic differential equations with critically irregular drift coefficients. (English) Zbl 1540.60129

Summary: This paper is concerned with stochastic differential equations (SDEs for short) with irregular coefficients. By utilising a functional analytic approximation approach, we establish the existence and uniqueness of strong solutions to a class of SDEs with critically irregular drift coefficients in a new critical Lebesgue space, where the element may be only weakly integrable in time. To be more precise, let \(b : [0, T] \times \mathbb{R}^d \to \mathbb{R}^d\) be Borel measurable, where \(T > 0\) is arbitrarily fixed and \(d \geqslant 1\). We consider the following SDE \[ X_t = x + \int\limits_0^t b(s, X_s) ds + W_t, \quad t \in [0, T], x \in \mathbb{R}^d, \] where \(\{W_t\}_{t \in [0, T]}\) is a \(d\)-dimensional standard Wiener process. For \(p, q \in [1, + \infty)\), we denote by \(\mathcal{C}_{[q]}([0, T]; L^p (\mathbb{R}^d))\) the space of all Borel measurable functions \(f\) such that \(t^{\frac{1}{q}} f(t) \in \mathcal{C}([0, T]; L^p(\mathbb{R}^d))\). If \(b = b_1 + b_2\) such that \(| b_1(T - \cdot) | \in \mathcal{C}_{[q]}([0, T]; L^p (\mathbb{R}^d))\) with \(2 / q + d / p = 1\) and \(\| b_1 (T - \cdot) \|_{\mathcal{C}_{[q]} ([0, T]; L^p (\mathbb{R}^d))}\) is sufficiently small, and that \(b_2\) is bounded and Borel measurable, then we show that there exists a weak solution to the above equation, and if in addition \(\lim_{t \downarrow 0} \| t^{\frac{1}{q}} b (T - t) \|_{L^p (\mathbb{R}^d)} = 0\), the pathwise uniqueness holds. Furthermore, we obtain the strong Feller property of the semi-group and the existence of density associated with the above SDE. Besides, we extend the classical results concerning partial differential equations (PDEs) of parabolic type with \(L^q (0, T; L^p(\mathbb{R}^d))\) coefficients to the case of parabolic PDEs with \(L_{[q]}^\infty(0, T; L^p(\mathbb{R}^d))\) coefficients, and derive the Lipschitz regularity for solutions of second order parabolic PDEs (see Theorem 3.1). Our results extend Krylov-Röckner and Krylov’s profound results of SDEs with singular time dependent drift coefficients [N. V. Krylov and M. Röckner, Probab. Theory Relat. Fields 131, No. 2, 154–196 (2005; Zbl 1072.60050); N. V. Krylov, Ann. Probab. 49, No. 6, 3142–3167 (2021; Zbl 1497.60076)] to the critical case of SDEs with critically irregular drift coefficients in a new critical Lebesgue space.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60K35 Interacting random processes; statistical mechanics type models; percolation theory
34F05 Ordinary differential equations and systems with randomness
Full Text: DOI

References:

[1] Adams, A.; Fourier, J. F., Sobolev Space, Pure and Applied Mathematics Series, vol. 140 (2005), Elsevier: Elsevier Oxford
[2] Ambrosio, L., Transport equation and Cauchy problem for BV vector fields, Invent. Math., 158, 2, 227-260 (2004) · Zbl 1075.35087
[3] Attanasio, S., Stochastic flows of diffeomorphisms for one-dimensional SDE with discontinuous drift, Electron. Commun. Probab., 15, 13, 213-226 (2010) · Zbl 1226.60086
[4] Beck, L.; Flandoli, F.; Gubinelli, M.; Maurelli, M., Stochastic ODEs and stochastic linear PDEs with critical drift: regularity, duality and uniqueness, Electron. J. Probab., 24, 136, 1-72 (2019) · Zbl 1427.60103
[5] Constantin, P.; Iyer, G., A stochastic Lagrangian representation of the three-dimensional incompressible Navier-Stokes equations, Commun. Pure Appl. Math., 61, 3, 330-345 (2008) · Zbl 1156.60048
[6] Davie, A. M., Uniqueness of solutions of stochastic differential equations, Int. Math. Res. Not., 2007, 1, 1-26 (2007) · Zbl 1139.60028
[7] Fedrizzi, E.; Flandoli, F., Pathwise uniqueness and continuous dependence for SDEs with non-regular drift, Stochastics, 83, 3, 241-257 (2011) · Zbl 1221.60081
[8] Fedrizzi, E.; Flandoli, F., Hölder flow and differentiability for SDEs with nonregular drift, Stoch. Anal. Appl., 31, 4, 708-736 (2013) · Zbl 1281.60055
[9] Flandoli, F., Regularizing problems of Brownian paths and a result of Davie, Stoch. Dyn., 11, 02-03, 323-331 (2011) · Zbl 1236.60077
[10] Flandoli, F.; Gubinelli, M.; Priola, E., Well-posedness of the transport equation by stochastic perturbation, Invent. Math., 180, 1, 1-53 (2010) · Zbl 1200.35226
[11] Flandoli, F.; Gubinelli, M.; Priola, E., Flow of diffeomorphisms for SDEs with unbounded Hölder continuous drift, Bull. Sci. Math., 134, 4, 405-422 (2010) · Zbl 1198.60023
[12] Gyöngy, I.; Martinez, T., On stochastic differential equations with locally unbounded drift, Czechoslov. Math. J., 51, 4, 763-783 (2001) · Zbl 1001.60060
[13] Huang, Z. Y., Elementary Stochastic Calculus (2001), Science Press: Science Press Beijing, (in Chinese)
[14] Ikeda, N.; Watanabe, S., Stochastic Differential Equations and Diffusion Processes (1989), North-Holland · Zbl 0684.60040
[15] Kinzebulatov, D.; Semenov, Y. A., Brownian motion with general drift, Stoch. Process. Appl., 130, 5, 2737-2750 (2020) · Zbl 1435.60047
[16] Kinzebulatov, D.; Semenov, Y. A.; Song, R., Stochastic transport equation with singular drift (2021)
[17] Kinzebulatov, D.; Madou, K. R., Stochastic equations with time-dependent singular drift, J. Differ. Equ., 337, 255-293 (2022) · Zbl 1507.60077
[18] Krylov, N. V., On Itô stochastic integral equations, Theory Probab. Appl., 14, 340-348 (1969) · Zbl 0214.44301
[19] Krylov, N. V., Controlled Diffusion Processes, Applications of Mathematics, vol. 14 (1980), Springer-Verlag: Springer-Verlag New York-Berlin, translated from the Russian by A.B. Aries · Zbl 0436.93055
[20] Krylov, N. V.; Röckner, M., Strong solutions to stochastic equations with singular time dependent drift, Probab. Theory Relat. Fields, 131, 2, 154-196 (2005) · Zbl 1072.60050
[21] Krylov, N. V., On time inhomogeneous stochastic Itô equations with drift in \(L^{d + 1}\), Ukr. Math. J., 72, 9, 1-25 (2020)
[22] Krylov, N. V., On stochastic equations with drift in \(L_d\), Ann. Probab., 49, 5, 2371-2398 (2021) · Zbl 1489.60102
[23] Krylov, N. V., On strong solutions of Ito’s equations with \(a \in W_d^1\) and \(b \in L_d\), Ann. Probab., 49, 6, 3142-3167 (2021) · Zbl 1497.60076
[24] Menoukeu-Pamen, O.; Mohammed, S. E.A., Flows for singular stochastic differential equations with unbounded drifts, J. Funct. Anal., 277, 5, 1269-1333 (2019) · Zbl 1458.60071
[25] Mohammed, S. E.A.; Nilssen, T. K.; Proske, F. N., Sobolev differentiable stochastic flows for SDEs with singular coefficients: applications to the transport equation, Ann. Probab., 43, 3, 1535-1576 (2015) · Zbl 1333.60127
[26] Nam, K., Stochastic differential equations with critical drifts, Stoch. Process. Appl., 130, 9, 5366-5393 (2020) · Zbl 1447.35403
[27] Protter, P. E., Stochastic Integration and Differential Equations (2004), Springer: Springer Berlin · Zbl 1041.60005
[28] Rezakhanlou, F., Pointwise bounds for the solutions of the Smoluchowski equation with diffusion, Arch. Ration. Mech. Anal., 212, 3, 1011-1035 (2014) · Zbl 1293.35338
[29] Rezakhanlou, F., Stochastically symplectic maps and their applications to the Navier-Stokes equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 33, 1, 1-22 (2016) · Zbl 1330.53103
[30] Röckner, M.; Zhao, G., SDEs with critical time dependent drifts: weak solutions, Bernoulli, 29, 1, 757-784 (2023) · Zbl 1540.60125
[31] Röckner, M.; Zhao, G., SDEs with critical time dependent drifts: strong solutions (2021)
[32] Stroock, D. W.; Varadhan, S. R., Diffusion processes with continuous coefficients, I, Commun. Pure Appl. Math., 22, 3, 345-400 (1969) · Zbl 0167.43903
[33] Stroock, D. W.; Varadhan, S. R., Diffusion processes with continuous coefficients, II, Commun. Pure Appl. Math., 22, 4, 379-530 (1969) · Zbl 0167.43904
[34] Tian, R.; Wei, J.; Tang, Y., Parabolic PDEs of second-order with singular coefficients in critical space and applications, Stoch. Anal. Appl., 38, 6, 1102-1121 (2020) · Zbl 1467.60052
[35] Tian, R.; Ding, L.; Wei, J., Strong solutions of stochastic differential equations with square integrable drift, Bull. Sci. Math., 174, Article 103085 pp. (2022) · Zbl 1490.60177
[36] Veretennikov, A. Ju., On the strong solutions of stochastic differential equations, Theory Probab. Appl., 24, 2, 348-360 (1980) · Zbl 0418.60061
[37] Wang, F-Y.; Zhang, X. C., Degenerate SDE with Hölder-Dini drift and non-Lipschitz noise coefficient, SIAM J. Math. Anal., 48, 3, 2189-2226 (2016) · Zbl 1342.60093
[38] Wei, J.; Duan, J.; Gao, H.; Lv, G., Stochastic regularization for transport equations, Stoch. Partial Differ. Equ., Anal. Computat., 9, 1, 105-141 (2021) · Zbl 1477.60103
[39] Wei, J.; Lv, G.; Wang, W., Stochastic transport equation with bounded and Dini continuous drift, J. Differ. Equ., 323, 5, 359-403 (2022) · Zbl 1486.60085
[40] Xia, P.; Xie, L.; Zhang, X.; Zhao, G., \( L^q( L^p)\)-theory of stochastic differential equations, Stoch. Process. Appl., 130, 8, 5188-5211 (2020) · Zbl 1456.60153
[41] Yamada, T.; Watanabe, S., On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ., 11, 1, 155-167 (1971) · Zbl 0236.60037
[42] Yamada, T.; Tsuchiya, M.; Watanabe, S., Perturbation of drift-type for Lévy process, J. Math. Kyoto Univ., 14, 1, 73-92 (1974) · Zbl 0281.60064
[43] Yang, S.; Zhang, T., Strong existence and uniqueness of solutions of SDEs with time dependent Kato class coefficients (2020)
[44] Zhang, X., Strong solutions of SDEs with singular drift and Sobolev diffusion coefficients, Stoch. Process. Appl., 115, 11, 1805-1818 (2005) · Zbl 1078.60045
[45] Zhang, X., Stochastic homeomorphism flows of SDEs with singular drifts and Sobolev diffusion coefficients, Electron. J. Probab., 16, 13, 1096-1116 (2011) · Zbl 1225.60099
[46] Zhang, X., Stochastic differential equations with Sobolev drifts and driven by α-stable processes, Ann. Inst. Henri Poincaré Probab. Stat., 49, 4, 1057-1079 (2013) · Zbl 1279.60074
[47] Zvonkin, A. K., A transformation of the phase space of a diffusion process that will remove the drift, Mat. Sb. (N.S.), 22, 22, 129-149 (1974), (in Russian) · Zbl 0306.60049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.