×

Flow of diffeomorphisms for SDEs with unbounded Hölder continuous drift. (English) Zbl 1198.60023

Summary: We consider a SDE with a smooth multiplicative non-degenerate noise and a possibly unbounded Hölder continuous drift term. We prove the existence of a global flow of diffeomorphisms by means of a special transformation of the drift of Itô-Tanaka type. The proof requires non-standard elliptic estimates in Hölder spaces. As an application of the stochastic flow, we obtain a Bismut-Elworthy-Li type formula for the first derivatives of the associated diffusion semigroup.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)

References:

[1] Bertoldi, M.; Lorenzi, L., Analytical Methods for Markov Semigroups (2007), Chapman & Hall/CRC · Zbl 1109.35005
[2] Bahlali, K., Flows of homeomorphisms of stochastic differential equations with measurable drift, Stoch. Stoch. Rep., 67, 1-2, 53-82 (1999) · Zbl 0937.60059
[3] Bismut, J. M., Martingales, the Malliavin Calculus and hypoellipticity general Hörmander’s condition, Z. Wharscheinlichkeitstheorie Gabiele, 56, 469-505 (1981) · Zbl 0445.60049
[4] Cerrai, S., Second Order PDE’s in Finite and Infinite Dimensions. A Probabilistic Approach, Lectures Notes in Math., vol. 1762 (2001), Springer-Verlag · Zbl 0983.60004
[5] Da Prato, G.; Zabczyk, J., Ergodicity for Infinite-Dimensional Systems, London Math. Soc. Lecture Note Ser., vol. 229 (1996), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0849.60052
[6] Elworthy, K. D.; Li, X. M., Formulae for the derivatives of heat semigroups, J. Funct. Anal., 125, 252-286 (1994) · Zbl 0813.60049
[7] Fang, S.; Imkeller, P.; Zhang, T., Global flows for stochastic differential equations without global Lipschitz conditions, Ann. Probab., 35, 1, 180-205 (2007) · Zbl 1128.60046
[8] Fang, S.; Luo, D., Flow of homeomorphisms and stochastic transport equations, Stoch. Anal. Appl., 25, 5, 1079-1108 (2007) · Zbl 1125.60083
[9] Fang, S.; Zhang, T., A study of a class of stochastic differential equations with non-Lipschitzian coefficients, Probab. Theory Related Fields, 132, 356-390 (2005) · Zbl 1081.60043
[10] Flandoli, F.; Gubinelli, M.; Priola, E., Well-posedness of the transport equation by stochastic perturbation, Invent. Math., 180, 1-53 (2010) · Zbl 1200.35226
[11] Fuhrman, M., Smoothing properties of nonlinear stochastic equations in Hilbert spaces, NoDEA Nonlinear Differential Equations Appl., 3, 445-464 (1996) · Zbl 0866.60050
[12] Gyöngy, I.; Martinez, T., On stochastic differential equations with locally unbounded drift, Czechoslovak Math. J. (4), 51, 126, 763-783 (2001) · Zbl 1001.60060
[13] Fournié, E.; Lasry, J. M.; Lebuchoux, J.; Lions, P. L.; Touzi, N., Applications of Malliavin calculus to Monte Carlo methods in finance, Finance Stoch., 3, 391-412 (1999) · Zbl 0947.60066
[14] Krylov, N. V., Lectures on Elliptic and Parabolic Equations in Hölder Spaces, Grad. Stud. Math., vol. 12 (1996), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0865.35001
[15] Krylov, N. V., Parabolic equations in \(L_p\)-spaces with mixed norms, Algebra i Analiz. Algebra i Analiz, St. Petersburg Math. J., 14, 4, 603-614 (2003), (in Russian); English translation in · Zbl 1032.35046
[16] Krylov, N. V.; Röckner, M., Strong solutions of stochastic equations with singular time dependent drift, Probab. Theory Related Fields, 131, 2, 154-196 (2005) · Zbl 1072.60050
[17] Krylov, N. V.; Priola, E., Elliptic and parabolic second-order PDEs with growing coefficients, Comm. Partial Differential Equations, 35, 1-22 (2010) · Zbl 1195.35160
[18] Kunita, H., Stochastic differential equations and stochastic flows of diffeomorphisms, (Ecole d’Été de Probabilités de Saint-Flour, XII-1982. Ecole d’Été de Probabilités de Saint-Flour, XII-1982, Lecture Notes in Math., vol. 1097 (1984), Springer: Springer Berlin), 143-303 · Zbl 0554.60066
[19] Kunita, H., Stochastic Flows and Stochastic Differential Equations (1990), Cambridge · Zbl 0743.60052
[20] Kusuoka, S.; Stroock, D. W., Application of the Malliavin calculus, III, J. Fac. Sci. Univ. Tokyo IA Math., 34, 391-442 (1987) · Zbl 0633.60078
[21] Li, X. M., Strong \(p\)-completeness of stochastic differential equations and the existence of smooth flows on non-compact manifolds, Probab. Theory Related Fields, 100, 485-511 (1994) · Zbl 0815.60050
[23] Mohammed, S.; Scheutzow, M., The stable manifold theorem for non-linear stochastic systems with memory. I. Existence of the semiflow, J. Funct. Anal., 205, 271-306 (2003) · Zbl 1039.60060
[24] Priola, E.; Zabczyk, J., Liouville theorems for non-local operators, J. Funct. Anal., 216, 455-490 (2004) · Zbl 1063.31003
[25] Priola, E., Formulae for the derivatives of degenerate diffusion semigroups, J. Evol. Equ., 6, 4, 577-600 (2006) · Zbl 1116.35075
[26] Priola, E., Global Schauder estimates for a class of degenerate Kolmogorov equations, Studia Math., 194, 2, 117-153 (2009) · Zbl 1178.35102
[27] Ren, J.; Zhang, X., Stochastic flows for SDEs with non-Lipschitz coefficients, Bull. Sci. Math., 127, 739-754 (2003) · Zbl 1035.60063
[28] Revuz, D.; Yor, M., Continuous Martingales and Brownian Motion (1991), Springer-Verlag: Springer-Verlag Berlin · Zbl 0731.60002
[29] Veretennikov, Yu. A., On strong solution and explicit formulas for solutions of stochastic integral equations, Math. USSR Sb., 39, 387-403 (1981) · Zbl 0462.60063
[30] Zhang, X., Strong solutions of SDES with singular drift and Sobolev diffusion coefficients, Stochastic Process. Appl., 115, 1805-1818 (2005) · Zbl 1078.60045
[31] Zhang, X., Homeomorphic flows for multi-dimensional SDEs with non-Lipschitz coefficients, Stochastic Process. Appl., 115, 435-448 (2005) · Zbl 1084.60037
[33] Zvonkin, A. K., A transformation of the phase space of a diffusion process that removes the drift, Mat. Sb. (1), 93, 135 (1974) · Zbl 0306.60049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.