×

Pointwise bounds for the solutions of the Smoluchowski equation with diffusion. (English) Zbl 1293.35338

Summary: We prove various decay bounds on solutions \((f_{n} : n >0)\) of the discrete and continuous Smoluchowski equations with diffusion. More precisely, we establish pointwise upper bounds on \(n^{\ell}f_{n}\) in terms of a suitable average of the moments of the initial data for every positive \(\ell\). As a consequence, we can formulate sufficient conditions on the initial data to guarantee the finiteness of \({L^p(\mathbb{R}^d \times [0, T])}\) norms of the moments \({X_a(x, t) := \sum_{m\in\mathbb{N}}m^a f_m(x, t)}\), \(({\int_0^{\infty} m^a f_m(x, t)dm}\) in the case of continuous Smoluchowski’s equation) for every \({p \in [1, \infty]}\). In previous papers [the author, Proc. R. Soc. Edinb., Sect. A, Math. 140, No. 5, 1041–1059 (2010; Zbl 1206.35055); A. Hammond and the author, Commun. Math. Phys. 276, No. 3, 645–670 (2007; Zbl 1132.35090)] we proved similar results for all weak solutions to the Smoluchowski’s equation provided that the diffusion coefficient \(d(n)\) is non-increasing as a function of the mass. In this paper we apply a new method to treat general diffusion coefficients and our bounds are expressed in terms of an auxiliary function \({\phi(n)}\) that is closely related to the total increase of the diffusion coefficient in the interval \((0, n]\).

MSC:

35Q82 PDEs in connection with statistical mechanics
60J60 Diffusion processes
82B21 Continuum models (systems of particles, etc.) arising in equilibrium statistical mechanics
76R50 Diffusion
Full Text: DOI

References:

[1] Amann H.: Coagulation-fragmentation processes. Arch. Rational Mech. Anal. 151, 339-366 (2000) · Zbl 0977.35060 · doi:10.1007/s002050050200
[2] Amann H., Walker Ch.: Local and global strong solutions to continuous coagulation-fragmentation equations with diffusion. J. Differential Equations, 218, 159-186 (2005) · Zbl 1082.35083 · doi:10.1016/j.jde.2004.09.004
[3] Ball J. M., Carr J.: The discrete coagulation-fragmentation equations: existence, uniqueness, and density conservation. J. Statist. Phys. 61, 203-234 (1990) · Zbl 1217.82050 · doi:10.1007/BF01013961
[4] Canizo, J. A., Desvillettes, L., Fellner, K.: Regularity and mass conservation for discrete coagulation-fragmentation equations with diffusion. Ann. Inst. H. Poincar Anal. Non Linaire27, 639654, (2010) · Zbl 1193.35091
[5] Hammond A.M., Rezakhanlou F.: Moment bounds for Smoluchowski Equation and their consequences. Commun. Math. Phys. 276, 645-670 (2008) · Zbl 1132.35090 · doi:10.1007/s00220-007-0304-5
[6] Hammond A. M., Rezakhanlou F.: The kinetic limit of a system of coagulating Brownian particles. Arch. Rational Mech. Anal. 185, 1-67 (2007) · Zbl 1115.82021 · doi:10.1007/s00205-006-0033-5
[7] Hammond A. M., Rezakhanlou F.: Kinetic limit for a system of coagulating planar Brownian particles. J. Stat. Phys. 124, 997-1040 (2006) · Zbl 1134.82020 · doi:10.1007/s10955-005-0105-1
[8] Laurençot Ph., Mischler S.: Global existence for the discrete diffusive coagulation-fragmentation equations in L1. Rev. Mat. Iberoamericana, 18, 731-745 (2002) · Zbl 1036.35089 · doi:10.4171/RMI/334
[9] Laurençot Ph., Mischler S.: The continuous coagulation-fragmentation equations with diffusion. Arch. Ration. Mech. Anal. 162, 45-99 (2002) · Zbl 0997.45005 · doi:10.1007/s002050100186
[10] Mischler, S., Rodriguez Ricard, M.: Existence globale pour l’equation de Smoluchowski continue non homogene et comportement asymptotique des solutions. C. R. Acad. Sci. Paris, Ser. I Math. 407-412, 336 (2003) · Zbl 1036.35072
[11] Rezakhanlou, F.: Moment bounds for the solutions of the Smoluchowski equation with coagulation and fragmentation. Proceedings of the Royal Society of Edinburgh. 140A, vol. 1041-1059 (2010) · Zbl 1206.35055
[12] Rezakhanlou F.: The coagulating Brownian particles and Smoluchowski’s equation. Markov Process. Related Fields 12, 425-445 (2006) · Zbl 1134.82022
[13] Wrzosek D.: Weak solutions to the Cauchy problem for the diffusive discrete coagulation-fragmentation system. J. Math. Anal. Appl. 289, 405-418 (2004) · Zbl 1039.35051 · doi:10.1016/j.jmaa.2003.08.022
[14] Wrzosek D.: Mass-conserving solutions to the discrete coagulation-fragmentation model with diffusion. Nonlinear Anal. 49, 297-314 (2002) · Zbl 1001.35059 · doi:10.1016/S0362-546X(01)00108-0
[15] Wrzosek D.: Existence of solutions for the discrete coagulation-fragmentation model with diffusion. Topol. Methods Nonlinear Anal. 9, 279-296 (1997) · Zbl 0892.35077
[16] Yaghouti, M.R., Rezakhanlou, F., Hammond, A.M.: Coagulation, diffusion and continuous Smoluchowski equation. Stochastic Process. Appl. 119 3042-3080 (2009). preprint · Zbl 1170.76053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.