×

Stochastic equations with time-dependent singular drift. (English) Zbl 1507.60077

Summary: We prove unique weak solvability for stochastic differential equations with drift in a large class of time-dependent vector fields. This class contains, in particular, the critical Ladyzhenskaya-Prodi-Serrin class, the weak \(L^d\) class as well as some vector fields that are not even in \(L_{\operatorname{loc}}^{2 + \varepsilon}\), \(\varepsilon > 0\).

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
35J75 Singular elliptic equations
47D07 Markov semigroups and applications to diffusion processes
60G53 Feller processes

References:

[1] Bass, R.; Chen, Z.-Q., Brownian motion with singular drift, Ann. Probab., 31, 791-817 (2003) · Zbl 1029.60044
[2] Beck, L.; Flandoli, F.; Gubinelli, M.; Maurelli, M., Stochastic ODEs and stochastic linear PDEs with critical drift: regularity, duality and uniqueness, Electron. J. Probab., 24, Article 136 pp. (2019) · Zbl 1427.60103
[3] Chang, S. Y.A.; Wilson, J. M.; Wolff, T. H., Some weighted norm inequalities concerning the Schrödinger operator, Comment. Math. Helv., 60, 217-246 (1985) · Zbl 0575.42025
[4] Dong, H.; Krylov, N. V., Aleksandrov’s estimates for elliptic equations with drift in Morrey spaces containing \(L^d (2021)\), Preprint
[5] Gulisashvili, A.; van Casteren, J. A., Non-autonomous Kato Classes and Feynman-Kac Propagators (2006), World Scientific · Zbl 1113.47031
[6] Kinzebulatov, D., Feller evolution families and parabolic equations with form-bounded vector fields, Osaka J. Math., 54, 499-516 (2017) · Zbl 1377.35128
[7] Kinzebulatov, D., A new approach to the \(L^p\)-theory of \(- \operatorname{\Delta} + b \cdot \operatorname{\nabla} \), and its applications to Feller processes with general drifts, Ann. Sc. Norm. Super. Pisa (5), 17, 685-711 (2017) · Zbl 1379.35087
[8] Kinzebulatov, D., Regularity theory of Kolmogorov operator revisited, Can. Math. Bull., 64, 725-736 (2021) · Zbl 1495.47070
[9] Kinzebulatov, D.; Semënov, Yu. A., Brownian motion with general drift, Stoch. Process. Appl., 130, 2737-2750 (2020) · Zbl 1435.60047
[10] Kinzebulatov, D.; Semënov, Yu. A., Feller generators and stochastic differential equations with singular (form-bounded) drift, Osaka J. Math., 58, 855-883 (2021) · Zbl 1498.60223
[11] Kinzebulatov, D.; Semënov, Yu. A., On the theory of the Kolmogorov operator in the spaces \(L^p\) and \(C_\infty \), Ann. Sc. Norm. Super. Pisa (5), 21, 1573-1647 (2020) · Zbl 1469.31027
[12] Kinzebulatov, D.; Semënov, Yu. A., Heat kernel bounds for parabolic equations with singular (form-bounded) vector fields, Math. Ann. (2022) · Zbl 1485.35095
[13] Kinzebulatov, D.; Semënov, Yu. A., Sharp solvability for singular SDEs (2021), Preprint
[14] Kinzebulatov, D.; Semënov, Yu. A.; Song, R., Stochastic transport equation with singular drift (2021), Preprint
[15] Kovalenko, V. F.; Perelmuter, M. A.; Semënov, Yu. A., Schrödinger operators with \(L_W^{1 / 2}( R^l)\)-potentials, J. Math. Phys., 22, 1033-1044 (1981) · Zbl 0463.47027
[16] Kovalenko, V. F.; Semënov, Yu. A., \( C_0\)-semigroups in \(L^p( \mathbb{R}^d)\) and \(C_\infty( \mathbb{R}^d)\) spaces generated by differential expression \(\operatorname{\Delta} + b \cdot \operatorname{\nabla} \), Teor. Veroâtn. Primen.. Teor. Veroâtn. Primen., Theory Probab. Appl., 35, 443-453 (1990), translation in · Zbl 0778.47031
[17] Krylov, N. V., On strong solutions of Itô’s equations with \(A \in W^{1 , d}\) and \(b \in L^d\), Ann. Probab., 49, 3142-3167 (2021) · Zbl 1497.60076
[18] Krylov, N. V., On diffusion processes with drift in \(L_d\), Probab. Theory Relat. Fields, 179, 165-199 (2021) · Zbl 1480.60239
[19] Krylov, N. V., On stochastic equations with drift in \(L^d\), Ann. Probab., 49, 2371-2398 (2021) · Zbl 1489.60102
[20] Krylov, N. V., On stochastic Itô processes with drift in \(L^d\), Stoch. Process. Appl., 138, 1-25 (2021) · Zbl 1469.60186
[21] Krylov, N. V., On diffusion processes with drift in \(L^{d + 1} (2021)\), Preprint · Zbl 1480.60239
[22] Krylov, N. V., On time inhomogeneous stochastic Itô equations with drift in \(L^{d + 1}\), Ukr. Math. J., 72, 1420-1444 (2021) · Zbl 1483.60083
[23] Krylov, N. V., On the heat equation with drift in \(L^{d + 1} (2021)\), Preprint
[24] Krylov, N. V., On diffusion processes with drift in a Morrey class containing \(L^{d + 2} (2021)\), Preprint
[25] Krylov, N. V.; Röckner, M., Strong solutions of stochastic equations with singular time dependent drift, Probab. Theory Relat. Fields, 131, 154-196 (2005) · Zbl 1072.60050
[26] Portenko, N. I., Generalized Diffusion Processes (1990), AMS · Zbl 0727.60088
[27] Röckner, M.; Zhao, G., SDEs with critical time dependent drifts: weak solutions (2020), Preprint
[28] Röckner, M.; Zhao, G., SDEs with critical time dependent drifts: strong solutions (2021), Preprint
[29] Semënov, Yu. A., Regularity theorems for parabolic equations, J. Funct. Anal., 231, 375-417 (2006) · Zbl 1090.35059
[30] Williams, R. J., Brownian motion with polar drift, Trans. Am. Math. Soc., 292, 225-246 (1985) · Zbl 0573.60072
[31] Xia, P.; Xie, L.; Zhang, X.; Zhao, G., \( L^q( L^p)\)-theory of stochastic differential equations, Stoch. Process. Appl., 130, 5188-5211 (2020) · Zbl 1456.60153
[32] Zhang, X., Strong solutions of SDEs with singular drift and Sobolev diffusion coefficients, Stoch. Process. Appl., 115, 11, 1805-1818 (2005) · Zbl 1078.60045
[33] Zhang, X., Stochastic homeomorphism flows of SDEs with singular drifts and Sobolev diffusion coefficients, Electron. J. Probab., 16, 1096-1116 (2011) · Zbl 1225.60099
[34] Zhang, X., Stochastic differential equations with Sobolev diffusion and singular drift and applications, Ann. Appl. Probab., 26, 5, 2697-2732 (2016) · Zbl 1353.60056
[35] Zhang, X.; Zhao, G., Stochastic Lagrangian path for Leray solutions of 3D Naiver-Stokes equations, Preprint
[36] Zhao, G., Stochastic Lagrangian flows for SDEs with rough coefficients, Preprint
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.