×

Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing. (English) Zbl 1218.65139

Summary: Metric tensors play a key role to control the generation of unstructured anisotropic meshes. In practice, the most well established error analysis enables to calculate a metric tensor on an element basis. In this paper, we propose to build a metric field directly at the nodes of the mesh for a direct use in the meshing tools. First, the unit mesh metric is defined and well justified on a node basis, by using the statistical concept of length distribution tensors. Then, the interpolation error analysis is performed on the projected approximate scalar field along the edges. The error estimate is established on each edge whatever the dimension is. It enables to calculate a stretching factor providing a new edge length distribution, its associated tensor and the corresponding metric. The optimal stretching factor field is obtained by solving an optimization problem under the constraint of a fixed number of edges in the mesh. Several examples of interpolation error are proposed as well as preliminary results of anisotropic adaptation for interface and free surface problem using a level set method.

MSC:

65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs

Software:

Cimlib
Full Text: DOI

References:

[1] F. Alauset, Adaptation de maillage anisotrope en trois dimension. Applications aux simulations instationnaires en MTcanique des Fluides, Ph.d. thesis, UniversitT de Montpellier II, 2003.; F. Alauset, Adaptation de maillage anisotrope en trois dimension. Applications aux simulations instationnaires en MTcanique des Fluides, Ph.d. thesis, UniversitT de Montpellier II, 2003.
[2] J. Dompierre, M.G. Vallet, M. Fortin, W.G. Habashi, D. Ant-Ali-Yahia, S. Boivin, Y. Bourgault, A.Tam: Edge-based mesh adaptation for CFD. International Conference on Numerical Methods for the Euler and Navier-Stokes Equations, in: Proceedings of Eighth IEEE Symp. pn Parallel and Distributed Processing, Montréal 1995, pp. 265-299.; J. Dompierre, M.G. Vallet, M. Fortin, W.G. Habashi, D. Ant-Ali-Yahia, S. Boivin, Y. Bourgault, A.Tam: Edge-based mesh adaptation for CFD. International Conference on Numerical Methods for the Euler and Navier-Stokes Equations, in: Proceedings of Eighth IEEE Symp. pn Parallel and Distributed Processing, Montréal 1995, pp. 265-299.
[3] Frey, P. J.; Alauzet, F., Anisotropic mesh adaptation for CFD computations, Computer Methods in Applied Mechanics and Engineering, 194, 48-49, 5068-5082 (2005) · Zbl 1092.76054
[4] Gruau, C.; Coupez, T., 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric, Computer Methods in Applied Mechanics and Engineering, 194, 4951-4976 (2005) · Zbl 1102.65122
[5] A. Loseille, Adaptation de maillage anisotrope 3D multi-Tchelles et ciblTe a une fonctionnelle pour la mTcanique des flluides, Application a la prTdiction haute fidTlitT du bang sonique, Ph.d. thesis, UniversitT Pierre et Marie Curie, 2008.; A. Loseille, Adaptation de maillage anisotrope 3D multi-Tchelles et ciblTe a une fonctionnelle pour la mTcanique des flluides, Application a la prTdiction haute fidTlitT du bang sonique, Ph.d. thesis, UniversitT Pierre et Marie Curie, 2008.
[6] Mesri, Y.; Zerguine, W.; Digonnet, H.; Luisa, S.; Coupez, T., Dynamic parallel mesh adaption for three dimensional unstructured meshes: application to interface tracking, International Meshing Roundtable (2008)
[7] Coupez, T., A mesh improvement method for 3D automatic remeshing, (Numerical Grid Generation in Computational Fluid Dynamics and Related Fields (1994), Pineridge Press), 615-626 · Zbl 0885.73077
[8] Coupez, T., Génération de maillage et adaptation de maillage par optimisation locale, Revue européenne des éléments finis, 9, 4, 403-423 (2000) · Zbl 0953.65089
[9] Li, X.; Shephard, M.; Beall, M., 3D anisotropic mesh adaptation by mesh modification, Computer Methods in Applied Mechanics and Engineering, 194, 48-49, 4915-4950 (2005) · Zbl 1090.76060
[10] Remacle, J.-F.; Shephard, X. M.; Flaherty, J., Anisotropic adaptive simulation of transient flows, International Journal for Numerical Methods in Engineering, 62, 899-923 (2005) · Zbl 1078.76042
[11] Formaggia, S.; Perotto, L., New anisotropic a priori error estimates, Numerical Mathematics, 89, 641-667 (2001) · Zbl 0990.65125
[12] Formaggia, S.; Perotto, L., Anisotropic error estimates for elliptic problems, Numerical Mathematics, 94, 1, 67-92 (2003) · Zbl 1031.65123
[13] Apel, T., Anisotropic Finite Elements: Local Estimates and Applications (1999), Teubner: Teubner Stuttgart · Zbl 0917.65090
[14] G. Kunert, A Posteriori Error Estimation for Anisotropic Tetrahedral and Triangular Finite Element Meshes, Ph.d. thesis, Fakultätu˙r Mathematik der Technischen Universitä Chemnitz, 1999.; G. Kunert, A Posteriori Error Estimation for Anisotropic Tetrahedral and Triangular Finite Element Meshes, Ph.d. thesis, Fakultätu˙r Mathematik der Technischen Universitä Chemnitz, 1999. · Zbl 0919.65066
[15] Mesri, Y.; Alauzet, F.; Loseille, A.; Hascoet, L.; Koobus, A.; Dervieux, B., Continuous metric for computational fluid dynamics, 16, 4, 346-355 (2007)
[16] Advani, S.; Tucker, C., The use of tensors to describe and predict fiber orientation in short fiber composites, Rheology, 31, 8, 751-784 (1987)
[17] T. Coupez, Mesh generation and adaptive remeshing by a local optimisation principle, in: Proceedings of the NAFEMS world congress, 1997, pp. 1051-1060.; T. Coupez, Mesh generation and adaptive remeshing by a local optimisation principle, in: Proceedings of the NAFEMS world congress, 1997, pp. 1051-1060.
[18] Advani, S.; Tucker, C., Closure approximation for 3-dimensional structure tensors, Rheology, 34, 367-386 (1990)
[19] E. Hachem, Stabilized Finite Element Method for Heat Transfer and Turbulent Flows inside Industrial Furnaces, Ph.d. thesis, Ecole Nationale Supérieure des Mines de Paris, 2009.; E. Hachem, Stabilized Finite Element Method for Heat Transfer and Turbulent Flows inside Industrial Furnaces, Ph.d. thesis, Ecole Nationale Supérieure des Mines de Paris, 2009.
[20] E. Hachem, T. Kloczko, H. Digonnet, T. Coupez, Stabilized finite element solution to handle complex heat and fluid flows in industrial furnace using the immersed volume method, International Journal for Numerical Methods in Fluids (http://dx.doi.org/10.1002/fld.2498; E. Hachem, T. Kloczko, H. Digonnet, T. Coupez, Stabilized finite element solution to handle complex heat and fluid flows in industrial furnace using the immersed volume method, International Journal for Numerical Methods in Fluids (http://dx.doi.org/10.1002/fld.2498 · Zbl 1319.76027
[21] Hachem, E.; Rivaux, B.; Kloczko, T.; Digonnet, H.; Coupez, T., Stabilized finite element method for incompressible flows with high Reynolds number, Journal of Computational Physics, 229, 8643-8665 (2010) · Zbl 1282.76120
[22] L. Ville, T. Silva, T. Coupez, Convected Level Set method for the numerical simulation of Fluid Buckling, Accepted in the International Journal for Numerical Methods in Fluids.; L. Ville, T. Silva, T. Coupez, Convected Level Set method for the numerical simulation of Fluid Buckling, Accepted in the International Journal for Numerical Methods in Fluids. · Zbl 1301.76029
[23] Y. Mesri, H. Digonnet, T. Coupez, Advanced parallel computing in material forming with CimLib, Accepted in the European Journal of Computational Mechanics.; Y. Mesri, H. Digonnet, T. Coupez, Advanced parallel computing in material forming with CimLib, Accepted in the European Journal of Computational Mechanics. · Zbl 1278.74177
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.