×

Nuclear matrix elements from lattice QCD for electroweak and beyond-standard-model processes. (English) Zbl 1476.81154

Summary: Over the last decade, numerical solutions of Quantum Chromodynamics (QCD) using the technique of lattice QCD have developed to a point where they are beginning to connect fundamental aspects of nuclear physics to the underlying degrees of freedom of the Standard Model. In this review, the progress of lattice QCD studies of nuclear matrix elements of electroweak currents and beyond-Standard-Model operators is summarized, and connections with effective field theories and nuclear models are outlined.
Lattice QCD calculations of nuclear matrix elements can provide guidance for low-energy nuclear reactions in astrophysics, dark matter direct detection experiments, and experimental searches for violations of the symmetries of the Standard Model, including searches for additional CP violation in the hadronic and leptonic sectors, baryon-number violation, and lepton-number or flavor violation. Similarly, important inputs to neutrino experiments seeking to determine the neutrino-mass hierarchy and oscillation parameters, as well as other electroweak and beyond-Standard-Model processes can be determined. The phenomenological implications of existing studies of electroweak and beyond-Standard-Model matrix elements in light nuclear systems are discussed, and future prospects for the field toward precision studies of these matrix elements are outlined.

MSC:

81V22 Unified quantum theories
81V05 Strong interaction, including quantum chromodynamics
81V10 Electromagnetic interaction; quantum electrodynamics
81V15 Weak interaction in quantum theory
81V35 Nuclear physics
81T25 Quantum field theory on lattices

Software:

QUDA

References:

[1] Glashow, S., Partial symmetries of weak interactions, Nuclear Phys., 22, 579-588 (1961)
[2] Weinberg, S., A model of leptons, Phys. Rev. Lett., 19, 1264-1266 (1967)
[3] Salam, A., Weak and electromagnetic interactions, Conf. Proc. C, 680519, 367-377 (1968)
[4] Politzer, H.; Taylor, J., Reliable perturbative results for strong interactions?, Phys. Rev. Lett., 30, 1346-1349 (1973)
[5] Gross, D. J.; Wilczek, F.; Taylor, J., Ultraviolet behavior of nonabelian gauge theories, Phys. Rev. Lett., 30, 1343-1346 (1973)
[6] Freedman, S., Nuclear Physics: Exploring the Heart of Matter (2013) (2013), The National Academies Press: The National Academies Press Washington, DC
[7] Aprahamian, A., Reaching for the horizon: The 2015 long range plan for nuclear science (2015)
[8] Iocco, F.; Mangano, G.; Miele, G.; Pisanti, O.; Serpico, P. D., Primordial nucleosynthesis: from precision cosmology to fundamental physics, Phys. Rep., 472, 1-76 (2009), arXiv:0809.0631
[9] Cyburt, R. H.; Fields, B. D.; Olive, K. A.; Yeh, T.-H., Big bang nucleosynthesis: 2015, Rev. Modern Phys., 88, Article 015004 pp. (2016), arXiv:1505.01076
[10] Adelberger, E. G., Solar fusion cross sections II: the pp chain and CNO cycles, Rev. Modern Phys., 83, 195 (2011), arXiv:1004.2318
[11] Burrows, A., Colloquium: Perspectives on core-collapse supernova theory, Rev. Modern Phys., 85, 245 (2013), arXiv:1210.4921
[12] Janka, H.-T.; Langanke, K.; Marek, A.; Martinez-Pinedo, G.; Mueller, B., Theory of core-collapse supernovae, Phys. Rep., 442, 38-74 (2007), arXiv:astro-ph/0612072
[13] Bethe, H. A., Nuclear physics needed for the theory of supernovae, Ann. Rev. Nucl. Part. Sci., 38, 1, 1-29 (1988)
[14] Hewett, J., Planning the future of U.S. particle physics (snowmass 2013): Chapter 2: Intensity frontier, (Community Summer Study 2013: Snowmass on the Mississippi (2014)), arXiv:1401.6077
[15] Bertone, G.; Hooper, D.; Silk, J., Particle dark matter: Evidence, candidates and constraints, Phys. Rep., 405, 279-390 (2005), arXiv:hep-ph/0404175
[16] Feng, J. L., Dark matter candidates from particle physics and methods of detection, Ann. Rev. Astron. Astrophys., 48, 495-545 (2010), arXiv:1003.0904
[17] Cushman, P., Working group report: WIMP dark matter direct detection, (Community Summer Study 2013: Snowmass on the Mississippi (2013)), arXiv:1310.8327
[18] Cirigliano, V.; Ramsey-Musolf, M. J., Low energy probes of physics beyond the standard model, Prog. Part. Nucl. Phys., 71, 2-20 (2013), arXiv:1304.0017
[19] Cirigliano, V.; Davoudi, Z.; Bhattacharya, T.; Izubuchi, T.; Shanahan, P. E.; Syritsyn, S.; Wagman, M. L., The role of lattice QCD in searches for violations of fundamental symmetries and signals for new physics, Eur. Phys. J. A, 55, 11, 197 (2019), arXiv:1904.09704
[20] Alvarez-Ruso, L., NuSTEC White Paper: Status and challenges of neutrino-nucleus scattering, Prog. Part. Nucl. Phys., 100, 1-68 (2018), arXiv:1706.03621
[21] Kronfeld, A. S.; Richards, D. G.; Detmold, W.; Gupta, R.; Lin, H.-W.; Liu, K.-F.; Meyer, A. S.; Sufian, R.; Syritsyn, S., Lattice QCD and neutrino-nucleus scattering, Eur. Phys. J. A, 55, 11, 196 (2019), arXiv:1904.09931
[22] Wilson, K. G., Confinement of quarks, Phys. Rev. D, 10, 2445-2459 (1974), [,319(1974)], http://dx.doi.org/10.1103/PhysRevD.10.2445
[23] Balian, R.; Drouffe, J.; Itzykson, C., (Julve, J.; Ramón-Medrano, M., Gauge Fields on a Lattice. 1. General Outlook (1974)), 74-93
[24] Creutz, M.; Jacobs, L.; Rebbi, C., Experiments with a gauge invariant ising system, Phys. Rev. Lett., 42, 1390 (1979)
[25] Gattringer, C.; Lang, C. B., Quantum chromodynamics on the lattice, Lecture Notes in Phys., 788, 1-343 (2010)
[26] Rothe, H. J., Lattice gauge theories: An introduction, World Sci. Lecture Notes Phys.. World Sci. Lecture Notes Phys., World Sci. Lect. Notes Phys., 82, 1-381 (2012) · Zbl 0875.81030
[27] DeGrand, T.; Detar, C. E., Lattice Methods for Quantum Chromodynamics (2006), World Scientific · Zbl 1110.81001
[28] Montvay, I.; Münster, G., Quantum fields on a lattice, (Cambridge Monographs on Mathematical Physics (1997), Cambridge University Press)
[29] Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, S. C.; Schiavilla, R.; Schmidt, K. E.; Wiringa, R. B., Quantum Monte Carlo methods for nuclear physics, Rev. Modern Phys., 87, 1067-1118 (2015), arXiv:1412.3081
[30] Meißner, U.-G., The long and winding road from chiral effective Lagrangians to nuclear structure, Phys. Scr., 91, 3, Article 033005 pp. (2016), arXiv:1510.03230
[31] Hammer, H.-W.; König, S.; van Kolck, U., Nuclear effective field theory: status and perspectives, Rev. Modern Phys., 92, 2, Article 025004 pp. (2020), arXiv:1906.12122
[32] Epelbaum, E.; Krebs, H.; Reinert, P., High-precision nuclear forces from chiral EFT: State-of-the-art, challenges and outlook, Front. Phys., 8, 98 (2020), arXiv:1911.11875
[33] Tews, I.; Davoudi, Z.; Ekström, A.; Holt, J. D.; Lynn, J. E., New ideas in constraining nuclear forces (2020), arXiv:2001.03334
[34] Gysbers, P., Discrepancy between experimental and theoretical \(\beta \)-decay rates resolved from first principles, Nat. Phys., 15, 5, 428-431 (2019), arXiv:1903.00047
[35] King, G.; Andreoli, L.; Pastore, S.; Piarulli, M.; Schiavilla, R.; Wiringa, R.; Carlson, J.; Gandolfi, S., Chiral effective field theory calculations of weak transitions in light nuclei (2020), arXiv:2004.05263
[36] Beane, S. R.; Chang, E.; Cohen, S.; Detmold, W.; Lin, H. W.; Orginos, K.; Parreño, A.; Savage, M. J.; Tiburzi, B. C., Magnetic moments of light nuclei from lattice quantum chromodynamics, Phys. Rev. Lett., 113, 25, Article 252001 pp. (2014), arXiv:1409.3556
[37] Beane, S. R.; Chang, E.; Detmold, W.; Orginos, K.; Parreño, A.; Savage, M. J.; Tiburzi, B. C., Ab initio calculation of the \(n p \to d \gamma\) radiative capture process, Phys. Rev. Lett., 115, 13, Article 132001 pp. (2015), arXiv:1505.02422
[38] Savage, M. J.; Shanahan, P. E.; Tiburzi, B. C.; Wagman, M. L.; Winter, F.; Beane, S. R.; Chang, E.; Davoudi, Z.; Detmold, W.; Orginos, K., Proton-proton fusion and tritium \(\beta\) decay from lattice quantum chromodynamics, Phys. Rev. Lett., 119, 6, 62002 (2017), arXiv:1610.04545
[39] Shanahan, P. E.; Tiburzi, B. C.; Wagman, M. L.; Winter, F.; Chang, E.; Davoudi, Z.; Detmold, W.; Orginos, K.; Savage, M. J., Isotensor axial polarizability and lattice QCD input for nuclear double-\( \beta\) decay phenomenology, Phys. Rev. Lett., 119, 6, 62003 (2017), arXiv:1701.03456
[40] Tiburzi, B. C.; Wagman, M. L.; Winter, F.; Chang, E.; Davoudi, Z.; Detmold, W.; Orginos, K.; Savage, M. J.; Shanahan, P. E., Double-\( \beta\) decay matrix elements from lattice quantum chromodynamics, Phys. Rev. D, 96, 5, 54505 (2017), arXiv:1702.02929
[41] Chang, E.; Davoudi, Z.; Detmold, W.; Gambhir, A. S.; Orginos, K.; Savage, M. J.; Shanahan, P. E.; Wagman, M. L.; Winter, F., Scalar, axial, and tensor interactions of light nuclei from lattice QCD, Phys. Rev. Lett., 120, Article 152002 pp. (2018), arXiv:1712.03221
[42] Beane, S. R.; Orginos, K.; Savage, M. J., Hadronic interactions from lattice QCD, Internat. J. Modern Phys. E, 17, 1157-1218 (2008), arXiv:0805.4629
[43] Young, G.; Dean, D.; Savage, M. J., Forefront questions in nuclear science and the role of computing at the extreme scale (2009)
[44] Dean, D., Computational nuclear physics - input for a long range plan (2014), (Presentation from the Computational Nuclear Physics meeting, July 14th and 15th of 201, Washington DC (2014)), URL https://www.jlab.org/conferences/cnp2014/talks/monday/dean.pdf
[45] Carlson, J.; Savage, M. J., Nuclear physics exascale requirements review (2017) (2017), URL https://exascaleage.org/wp-content/uploads/sites/67/2017/06/DOE-ExascaleReport-NP-Final.pdf
[46] Carlson, J., White paper on nuclear astrophysics and low-energy nuclear physics, Part 2: Low-energy nuclear physics, Prog. Part. Nucl. Phys., 94, 68-124 (2017)
[47] Detmold, W.; Edwards, R. G.; Dudek, J. J.; Engelhardt, M.; Lin, H.-W.; Meinel, S.; Orginos, K.; Shanahan, P., Hadrons and nuclei, Eur. Phys. J. A, 55, 11, 193 (2019), arXiv:1904.09512
[48] Joó, B.; Jung, C.; Christ, N. H.; Detmold, W.; Edwards, R.; Savage, M.; Shanahan, P., Status and future perspectives for lattice gauge theory calculations to the exascale and beyond, Eur. Phys. J. A, 55, 11, 199 (2019), arXiv:1904.09725
[49] Borsanyi, S., Ab initio calculation of the neutron-proton mass difference, Science, 347, 1452-1455 (2015), arXiv:1406.4088
[50] Alexandrou, C.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Kallidonis, C.; Koutsou, G.; Vaquero Avilés-Casco, A.; Wiese, C., Nucleon spin and momentum decomposition using lattice QCD simulations, Phys. Rev. Lett., 119, 14, Article 142002 pp. (2017), arXiv:1706.02973
[51] Yang, Y.-B.; Liang, J.; Bi, Y.-J.; Chen, Y.; Draper, T.; Liu, K.-F.; Liu, Z., Proton mass decomposition from the QCD energy momentum tensor, Phys. Rev. Lett., 121, 21, Article 212001 pp. (2018), arXiv:1808.08677
[52] Lin, H.-W.; Gupta, R.; Yoon, B.; Jang, Y.-C.; Bhattacharya, T., Quark contribution to the proton spin from 2+1+1-flavor lattice QCD, Phys. Rev. D, 98, 9, Article 094512 pp. (2018), arXiv:1806.10604
[53] Gupta, R.; Jang, Y.-C.; Lin, H.-W.; Yoon, B.; Bhattacharya, T., Axial vector form factors of the nucleon from lattice QCD, Phys. Rev. D, 96, 11, Article 114503 pp. (2017), arXiv:1705.06834
[54] Jang, Y.-C.; Gupta, R.; Lin, H.-W.; Yoon, B.; Bhattacharya, T., Nucleon electromagnetic form factors in the continuum limit from (2+1+1)-flavor lattice QCD, Phys. Rev. D, 101, 1, Article 014507 pp. (2020), arXiv:1906.07217
[55] Djukanovic, D.; Ottnad, K.; Wilhelm, J.; Wittig, H., Strange electromagnetic form factors of the nucleon with \(N_f = 2 + 1 \mathcal{O} ( a )\)-improved Wilson fermions, Phys. Rev. Lett., 123, 21, Article 212001 pp. (2019), arXiv:1903.12566
[56] Alexandrou, C.; Bacchio, S.; Constantinou, M.; Finkenrath, J.; Hadjiyiannakou, K.; Jansen, K.; Koutsou, G.; Vaquero Aviles-Casco, A., Proton and neutron electromagnetic form factors from lattice QCD, Phys. Rev. D, 100, 1, 14509 (2019), arXiv:1812.10311
[57] Kallidonis, C.; Syritsyn, S.; Engelhardt, M.; Green, J.; Meinel, S.; Negele, J.; Pochinsky, A., Nucleon electromagnetic form factors at high \(Q^2\) from Wilson-clover fermions, PoS Lattice, 2018, 125 (2018), arXiv:1810.04294
[58] Shanahan, P.; Detmold, W., Pressure distribution and shear forces inside the proton, Phys. Rev. Lett., 122, 7, Article 072003 pp. (2019), arXiv:1810.07589
[59] Bhattacharya, T.; Cirigliano, V.; Cohen, S.; Gupta, R.; Lin, H.-W.; Yoon, B., Axial, scalar and tensor charges of the nucleon from 2+1+1-flavor lattice QCD, Phys. Rev. D, 94, 5, 54508 (2016), arXiv:1606.07049
[60] Gupta, R.; Jang, Y.-C.; Yoon, B.; Lin, H.-W.; Cirigliano, V.; Bhattacharya, T., Isovector charges of the nucleon from 2+1+1-flavor lattice QCD, Phys. Rev. D, 98, 34503 (2018), arXiv:1806.09006
[61] Chang, C. C., A per-cent-level determination of the nucleon axial coupling from quantum chromodynamics, Nature, 558, 7708, 91-94 (2018), arXiv:1805.12130
[62] Bali, G. S.; Barca, L.; Collins, S.; Gruber, M.; Löffler, M.; Schäfer, A.; Söldner, W.; Wein, P.; Weishs̈upl, S.; Wurm, T., Nucleon axial structure from lattice QCD, J. High Energy Phys., 05, 126 (2020), arXiv:1911.13150
[63] Capitani, S.; Della Morte, M.; Djukanovic, D.; von Hippel, G. M.; Hua, J.; Jäger, B.; Junnarkar, P.; Meyer, H.; Rae, T.; Wittig, H., Isovector axial form factors of the nucleon in two-flavor lattice QCD, 34, 02, Article 1950009 pp. (2019), arXiv:1705.06186
[64] Dürr, S., Sigma term and strangeness content of octet baryons, Phys. Rev. D. Phys. Rev. D, Phys. Rev. D, 93, Article 039905 pp. (2016), (erratum)
[65] Dürr, S., Lattice computation of the nucleon scalar quark contents at the physical point, Phys. Rev. Lett., 116, 17, Article 172001 pp. (2016), arXiv:1510.08013
[66] Yang, Y.-B.; Alexandru, A.; Draper, T.; Liang, J.; Liu, K.-F., \( \pi N\) and strangeness sigma terms at the physical point with chiral fermions, Phys. Rev. D, 94, 5, Article 054503 pp. (2016), arXiv:1511.09089
[67] Bali, G., Nucleon mass and sigma term from lattice QCD with two light fermion flavors, Nuclear Phys. B, 866, 1-25 (2013), arXiv:1206.7034 · Zbl 1262.81254
[68] Freeman, W.; Toussaint, D., Intrinsic strangeness and charm of the nucleon using improved staggered fermions, Phys. Rev. D, 88, Article 054503 pp. (2013), arXiv:1204.3866
[69] Junnarkar, P.; Walker-Loud, A., Scalar strange content of the nucleon from lattice QCD, Phys. Rev. D, 87, Article 114510 pp. (2013), arXiv:1301.1114
[70] Hasan, N.; Green, J.; Meinel, S.; Engelhardt, M.; Krieg, S.; Negele, J.; Pochinsky, A.; Syritsyn, S., Nucleon axial, scalar, and tensor charges using lattice QCD at the physical pion mass, Phys. Rev. D, 99, 11, Article 114505 pp. (2019), arXiv:1903.06487
[71] Aoki, S., FLAG Review 2019: Flavour lattice averaging group (FLAG), Eur. Phys. J. C, 80, 2, 113 (2020), arXiv:1902.08191
[72] Bazavov, A., Equation of state in (2+1)-flavor QCD, Phys. Rev. D, 90, Article 094503 pp. (2014), arXiv:1407.6387
[73] Borsanyi, S.; Fodor, Z.; Hoelbling, C.; Katz, S. D.; Krieg, S.; Szabo, K. K., Full result for the QCD equation of state with 2+1 flavors, Phys. Lett. B, 730, 99-104 (2014), arXiv:1309.5258
[74] Bazavov, A., \( B_{( s )}^0\)-mixing matrix elements from lattice QCD for the Standard Model and beyond, Phys. Rev. D, 93, 11, Article 113016 pp. (2016), arXiv:1602.03560
[75] Bailey, J. A., \( | V_{u b} |\) from \(B \to \pi \ell \nu\) decays and (2+1)-flavor lattice QCD, Phys. Rev. D, 92, 1, Article 014024 pp. (2015), arXiv:1503.07839
[76] Bailey, J. A., \(B \to D \ell \nu\) form factors at nonzero recoil and —\(V{}_{c b}\)— from 2+1-flavor lattice QCD, Phys. Rev. D, 92, 3, Article 034506 pp. (2015), arXiv:1503.07237
[77] Detmold, W.; Meinel, S., \( \Lambda_b \to \Lambda \ell^+ \ell^-\) Form factors, differential branching fraction, and angular observables from lattice QCD with relativistic \(b\) quarks, Phys. Rev. D, 93, 7, Article 074501 pp. (2016), arXiv:1602.01399
[78] Detmold, W.; Lehner, C.; Meinel, S., \( \Lambda_b \to p \ell^- \overline{\nu}_\ell\) And \(\Lambda_b \to \Lambda_c \ell^- \overline{\nu}_\ell\) form factors from lattice QCD with relativistic heavy quarks, Phys. Rev. D, 92, 3, Article 034503 pp. (2015), arXiv:1503.01421
[79] Bazavov, A., \( B_s \to K \ell \nu\) Decay from lattice QCD, Phys. Rev. D, 100, 3, Article 034501 pp. (2019), arXiv:1901.02561
[80] Bazavov, A., Up-, down-, strange-, charm-, and bottom-quark masses from four-flavor lattice QCD, Phys. Rev. D, 98, 5, Article 054517 pp. (2018), arXiv:1802.04248
[81] Meyer, H. B.; Wittig, H., Lattice QCD and the anomalous magnetic moment of the muon, Prog. Part. Nucl. Phys., 104, 46-96 (2019), arXiv:1807.09370
[82] Blum, T.; Christ, N.; Hayakawa, M.; Izubuchi, T.; Jin, L.; Jung, C.; Lehner, C., The hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD, Phys. Rev. Lett., 124, 13, Article 132002 pp. (2020), arXiv:1911.08123
[83] Blum, T.; Boyle, P.; Gülpers, V.; Izubuchi, T.; Jin, L.; Jung, C.; Jüttner, A.; Lehner, C.; Portelli, A.; Tsang, J., Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment, Phys. Rev. Lett., 121, 2, Article 022003 pp. (2018), arXiv:1801.07224
[84] Davies, C., Hadronic-vacuum-polarization contribution to the muon’s anomalous magnetic moment from four-flavor lattice QCD, Phys. Rev. D, 101, 3, Article 034512 pp. (2020), arXiv:1902.04223
[85] Borsanyi, S., Leading-order hadronic vacuum polarization contribution to the muon magnetic momentfrom lattice QCD (2020), arXiv:2002.12347
[86] Gérardin, A.; Cè, M.; von Hippel, G.; Hörz, B.; Meyer, H. B.; Mohler, D.; Ottnad, K.; Wilhelm, J.; Wittig, H., The leading hadronic contribution to \(( g - 2 )_\mu\) from lattice QCD with \(N_{\operatorname{f}} = 2 + 1\) flavours of \(O(a)\) improved Wilson quarks, Phys. Rev. D, 100, 1, Article 014510 pp. (2019), arXiv:1904.03120
[87] Aoyama, T., The anomalous magnetic moment of the muon in the standard model (2020), arXiv:2006.04822
[88] Parisi, G., The strategy for computing the hadronic mass spectrum, Common Trends in Particle and Condensed Matter Physics: Proceedings of Les Houches Winter Advanced Study Institute, February 1980. Common Trends in Particle and Condensed Matter Physics: Proceedings of Les Houches Winter Advanced Study Institute, February 1980, Phys. Rep., 103, 203-211 (1984)
[89] Lepage, G., The Analysis of Algorithms for Lattice Field Theory, 97-120 (1989)
[90] Beane, S. R.; Detmold, W.; Lin, H.-W.; Luu, T. C.; Orginos, K.; Savage, M. J.; Torok, A.; Walker-Loud, A., High statistics analysis using anisotropic clover lattices: (III) baryon-baryon interactions, Phys. Rev. D, 81, 54505 (2010), arXiv:0912.4243
[91] Beane, S. R.; Detmold, W.; Luu, T. C.; Orginos, K.; Parreño, A.; Savage, M. J.; Torok, A.; Walker-Loud, A., High statistics analysis using anisotropic clover lattices. II. Three-baryon systems, Phys. Rev. D, 80, 74501 (2009), arXiv:0905.0466
[92] Beane, S. R.; Detmold, W.; Orginos, K.; Savage, M. J., Nuclear physics from lattice QCD, Prog. Part. Nucl. Phys., 66, 1-40 (2011), arXiv:1004.2935
[93] Beane, S. R.; Detmold, W.; Orginos, K.; Savage, M. J., Uncertainty quantification in lattice QCD calculations for nuclear physics, J. Phys. G, 42, 3, Article 034022 pp. (2015), arXiv:1410.2937
[94] Wigner, E., On the structure of nuclei beyond oxygen, Phys. Rev., 51, 947-958 (1937) · JFM 63.1423.02
[95] Wigner, E., On coupling conditions in light nuclei and the lifetimes of beta-radioactivities, Phys. Rev., 56, 519-527 (1939) · Zbl 0022.04801
[96] Fukugita, M.; Kuramashi, Y.; Mino, H.; Okawa, M.; Ukawa, A., An exploratory study of nucleon-nucleon scattering lengths in lattice QCD, Phys. Rev. Lett., 73, 2176-2179 (1994), arXiv:hep-lat/9407012
[97] Pochinsky, A.; Negele, J. W.; Scarlet, B.; DeGrand, T. A.; DeTar, C. E.; Sugar, R.; Toussaint, D., Lattice study of the H dibaryon, Nuclear Phys. B Proc. Suppl., 73, 255-257 (1999), arXiv:hep-lat/9809077
[98] Wetzorke, I.; Karsch, F.; Laermann, E.; Campostrini, M.; Caracciolo, S.; Cosmai, L.; Di Giacomo, A.; Rossi, P.; Rapuano, F., Further evidence for an unstable H dibaryon?, Nuclear Phys. B Proc. Suppl., 83, 218-220 (2000), arXiv:hep-lat/9909037
[99] Wetzorke, I.; Karsch, F.; Edwards, R.; Negele, J. W.; Richards, D., The h dibaryon on the lattice, Nuclear Phys. B Proc. Suppl., 119, 278-280 (2003), arXiv:hep-lat/0208029
[100] Beane, S. R.; Bedaque, P. F.; Luu, T. C.; Orginos, K.; Pallante, E.; Parreño, A.; Savage, M. J., Hyperon-nucleon scattering from fully-dynamical lattice QCD, Nuclear Phys. A, 794, 62-72 (2007), arXiv:hep-lat/0612026
[101] Ishii, N.; Aoki, S.; Hatsuda, T., The nuclear force from lattice QCD, Phys. Rev. Lett., 99, 22001 (2007), arXiv:nucl-th/0611096
[102] Yamazaki, T.; Kuramashi, Y.; Ukawa, A., Helium nuclei in quenched lattice QCD, Phys. Rev. D, 81, Article 111504 pp. (2010), arXiv:0912.1383
[103] Beane, S. R.; Bedaque, P. F.; Orginos, K.; Savage, M. J., Nucleon-nucleon scattering from fully-dynamical lattice QCD, Phys. Rev. Lett., 97, 12001 (2006), arXiv:hep-lat/0602010
[104] Beane, S. R., Evidence for a bound H-dibaryon from lattice QCD, Phys. Rev. Lett., 106, Article 162001 pp. (2011), arXiv:1012.3812
[105] Inoue, T.; Ishii, N.; Aoki, S.; Doi, T.; Hatsuda, T.; Ikeda, Y.; Murano, K.; Nemura, H.; Sasaki, K., Bound H-dibaryon in flavor su(3) limit of lattice QCD, Phys. Rev. Lett., 106, Article 162002 pp. (2011), arXiv:1012.5928
[106] Beane, S. R., Present constraints on the H-dibaryon at the physical point from lattice QCD, Modern Phys. Lett. A, 26, 2587-2595 (2011), arXiv:1103.2821
[107] Beane, S. R.; Chang, E.; Detmold, W.; Lin, H. W.; Luu, T. C.; Orginos, K.; Parreño, A.; Savage, M. J.; Torok, A.; Walker-Loud, A., The deuteron and exotic two-body bound states from lattice QCD, Phys. Rev. D, 85, 54511 (2012), arXiv:1109.2889
[108] Beane, S. R.; Chang, E.; Cohen, S. D.; Detmold, W.; Lin, H. W.; Luu, T. C.; Orginos, K.; Parreño, A.; Savage, M. J.; Walker-Loud, A., Light nuclei and hypernuclei from quantum chromodynamics in the limit of SU(3) flavor symmetry, Phys. Rev. D, 87, 3, 34506 (2013), arXiv:1206.5219
[109] Yamazaki, T.; Ishikawa, K.-i.; Kuramashi, Y.; Ukawa, A., Helium nuclei, deuteron and dineutron in 2+1 flavor lattice QCD, Phys. Rev. D, 86, 74514 (2012), arXiv:1207.4277
[110] Beane, S. R., Nucleon-nucleon scattering parameters in the limit of SU(3) flavor symmetry, Phys. Rev. C, 88, 2, 24003 (2013), arXiv:1301.5790
[111] Yamazaki, T.; Ishikawa, K.-i.; Kuramashi, Y.; Ukawa, A., Study of quark mass dependence of binding energy for light nuclei in 2+1 flavor lattice QCD, Phys. Rev. D, 92, 1, 14501 (2015), arXiv:1502.04182
[112] Francis, A.; Green, J. R.; Junnarkar, P. M.; Miao, C.; Rae, T. D.; Wittig, H., Lattice QCD study of the \(H\) dibaryon using hexaquark and two-baryon interpolators, Phys. Rev. D, 99, 7, 74505 (2019), arXiv:1805.03966
[113] Wagman, M. L.; Winter, F.; Chang, E.; Davoudi, Z.; Detmold, W.; Orginos, K.; Savage, M. J.; Shanahan, P. E., Baryon-baryon interactions and spin-flavor symmetry from lattice quantum chromodynamics, Phys. Rev. D, 96, 11, Article 114510 pp. (2017), arXiv:1706.06550
[114] Berkowitz, E.; Kurth, T.; Nicholson, A.; Joó, B.; Rinaldi, E.; Strother, M.; Vranas, P. M.; Walker-Loud, A., Two-nucleon higher partial-wave scattering from lattice QCD, Phys. Lett. B, 765, 285-292 (2017), arXiv:1508.00886
[115] Lüscher, M., Volume dependence of the energy spectrum in massive quantum field theories. 2. Scattering states, Comm. Math. Phys., 105, 153-188 (1986) · Zbl 0614.58014
[116] Lin, C. J.D.; Martinelli, G.; Sachrajda, C. T.; Testa, M., \(K \to\) pi pi decays in a finite volume, Nuclear Phys. B, 619, 467-498 (2001), arXiv:hep-lat/0104006
[117] Aoki, S., I=2 pion scattering length from two-pion wave functions, Phys. Rev. D, 71, Article 094504 pp. (2005), arXiv:hep-lat/0503025
[118] Murano, K.; Ishii, N.; Aoki, S.; Hatsuda, T., Nucleon-nucleon potential and its non-locality in lattice QCD, Progr. Theoret. Phys., 125, 1225-1240 (2011), arXiv:1103.0619 · Zbl 1230.81056
[119] Aoki, S.; Ishii, N.; Doi, T.; Hatsuda, T.; Ikeda, Y.; Inoue, T.; Murano, K.; Nemura, H.; Sasaki, K., Extraction of hadron interactions above inelastic threshold in lattice QCD, Proc. Japan Acad. B, 87, 509-517 (2011), arXiv:1106.2281
[120] Ishii, N.; Aoki, S.; Doi, T.; Hatsuda, T.; Ikeda, Y.; Inoue, T.; Murano, K.; Nemura, H.; Sasaki, K., Hadron-hadron interactions from imaginary-time nambu-bethe-salpeter wave function on the lattice, Phys. Lett. B, 712, 437-441 (2012), arXiv:1203.3642
[121] Sasaki, K., \( \Lambda \Lambda\) And n \(\Xi\) interactions from lattice QCD near the physical point, Nuclear Phys. A, 998, Article 121737 pp. (2020), arXiv:1912.08630
[122] Beane, S. R.; Detmold, W.; Luu, T. C.; Orginos, K.; Savage, M. J.; Torok, A., Multi-pion systems in lattice QCD and the three-pion interaction, Phys. Rev. Lett., 100, 82004 (2008), arXiv:0710.1827
[123] Detmold, W.; Orginos, K.; Savage, M. J.; Walker-Loud, A., Kaon condensation with lattice QCD, Phys. Rev. D, 78, 54514 (2008), arXiv:0807.1856
[124] Detmold, W.; Smigielski, B., Lattice QCD study of mixed systems of pions and kaons, Phys. Rev. D, 84, 14508 (2011), arXiv:1103.4362
[125] Blanton, T. D.; Romero-López, F.; Sharpe, S. R., \( I = 3\) Three-pion scattering amplitude from lattice QCD, Phys. Rev. Lett., 124, Article 032001 pp. (2020), arXiv:1909.02973
[126] Doi, T.; Aoki, S.; Hatsuda, T.; Ikeda, Y.; Inoue, T.; Ishii, N.; Murano, K.; Nemura, H.; Sasaki, K., Exploring three-nucleon forces in lattice QCD, Progr. Theoret. Phys., 127, 723-738 (2012), arXiv:1106.2276
[127] Barnea, N.; Contessi, L.; Gazit, D.; Pederiva, F.; van Kolck, U., Effective field theory for lattice nuclei, Phys. Rev. Lett., 114, 5, 52501 (2015), arXiv:1311.4966
[128] Contessi, L.; Lovato, A.; Pederiva, F.; Roggero, A.; Kirscher, J.; van Kolck, U., Ground-state properties of \({}^4He\) and \({}^{16}O\) extrapolated from lattice QCD with pionless EFT, Phys. Lett. B, 772, 839-848 (2017), arXiv:1701.06516
[129] Beane, S. R.; Chang, E.; Cohen, S. D.; Detmold, W.; Lin, H. W.; Luu, T. C.; Orginos, K.; Parreño, A.; Savage, M. J.; Walker-Loud, A., Hyperon-nucleon interactions and the composition of dense nuclear matter from quantum chromodynamics, Phys. Rev. Lett., 109, Article 172001 pp. (2012), arXiv:1204.3606
[130] Epelbaum, E.; Krebs, H.; Lähde, T. A.; Lee, D.; Meißner, U.-G., Viability of carbon-based life as a function of the light quark mass, Phys. Rev. Lett., 110, 11, Article 112502 pp. (2013), arXiv:1212.4181
[131] Lähde, T. A.; Meißner, U.-G.; Epelbaum, E., An update on fine-tunings in the triple-alpha process (2019), arXiv:1906.00607
[132] Eliyahu, M.; Bazak, B.; Barnea, N., Extrapolating lattice QCD results using effective field theory (2019), arXiv:1912.07017
[133] Doi, T.; Della Morte, M.; Fritzsch, P.; Gámiz Sánchez, E.; Pena Ruano, C., Baryon interactions from lattice QCD with physical quark masses - Nuclear forces and \(\Xi \Xi\) forces -, EPJ Web Conf., 175, 05009 (2018), arXiv:1711.01952
[134] Beane, S. R.; Savage, M. J., Variation of fundamental couplings and nuclear forces, Nuclear Phys. A, 713, 148-164 (2003), arXiv:hep-ph/0206113
[135] Beane, S. R.; Savage, M. J., The quark mass dependence of two nucleon systems, Nuclear Phys. A, 717, 91-103 (2003), arXiv:nucl-th/0208021
[136] Kneller, J. P.; McLaughlin, G. C., The effect of bound dineutrons upon BBN, Phys. Rev. D, 70, Article 043512 pp. (2004), arXiv:astro-ph/0312388
[137] Chen, J.-W.; Lee, T.-K.; Liu, C.-P.; Liu, Y.-S., On the quark mass dependence of two nucleon observables, Phys. Rev. C, 86, Article 054001 pp. (2012), arXiv:1012.0453
[138] Meißner, U.-G.; Li-Sheng, G.; Meng, J.; Zhao, Q.; Zou, B.-S., Life on earth - an accident? Chiral symmetry and the anthropic principle, Internat. J. Modern Phys. E, 23, Article 1461005 pp. (2014), arXiv:1312.7550
[139] Meißner, U.-G., Anthropic considerations in nuclear physics, Sci. Bull., 60, 1, 43-54 (2015), arXiv:1409.2959
[140] Epelbaum, E.; Krebs, H.; Lähde, T. A.; Lee, D.; Meißner, U.-G., Dependence of the triple-alpha process on the fundamental constants of nature, Eur. Phys. J. A, 49, 82 (2013), arXiv:1303.4856
[141] Bansal, A.; Binder, S.; Ekström, A.; Hagen, G.; Jansen, G. R.; Papenbrock, T., Pion-less effective field theory for atomic nuclei and lattice nuclei, Phys. Rev. C, 98, Article 054301 pp. (2018), arXiv:1712.10246
[142] Detmold, W.; Orginos, K.; Parreño, A.; Savage, M. J.; Tiburzi, B. C.; Beane, S. R.; Chang, E., Unitary limit of two-nucleon interactions in strong magnetic fields, Phys. Rev. Lett., 116, 11, Article 112301 pp. (2016), arXiv:1508.05884
[143] Chang, E.; Detmold, W.; Orginos, K.; Parreño, A.; Savage, M. J.; Tiburzi, B. C.; Beane, S. R., Magnetic structure of light nuclei from lattice QCD, Phys. Rev. D, 92, 11, Article 114502 pp. (2015), arXiv:1506.05518
[144] Winter, F.; Detmold, W.; Gambhir, A. S.; Orginos, K.; Savage, M. J.; Shanahan, P. E.; Wagman, M. L., First lattice QCD study of the gluonic structure of light nuclei, Phys. Rev. D, 96, 9, 94512 (2017), arXiv:1709.00395
[145] Nicholson, A., Heavy physics contributions to neutrinoless double beta decay from QCD, Phys. Rev. Lett., 121, 17, Article 172501 pp. (2018), arXiv:1805.02634
[146] Feng, X.; Jin, L.-C.; Tuo, X.-Y.; Xia, S.-C., Light-neutrino exchange and long-distance contributions to \(0 \nu 2 \beta\) decays: An exploratory study on \(\pi \pi \to e e\), Phys. Rev. Lett., 122, 2, 22001 (2019), arXiv:1809.10511
[147] Detmold, W.; Murphy, D., Nuclear matrix elements for neutrinoless double beta decay from lattice QCD, Proceedings, 36th International Symposium on Lattice Field Theory (Lattice 2018): East Lansing, MI, United States, July 22-28, 2018. Proceedings, 36th International Symposium on Lattice Field Theory (Lattice 2018): East Lansing, MI, United States, July 22-28, 2018, PoS Lattice, 2018, 262 (2019), arXiv:1811.05554
[148] Tuo, X.-Y.; Feng, X.; Jin, L.-C., Long-distance contributions to neutrinoless double beta decay \(\pi^- \to \pi^+ e e\), Phys. Rev. D, 100, Article 094511 pp. (2019), arXiv:1909.13525
[149] Detmold, W.; Murphy, D., Neutrinoless double beta decay from lattice QCD: The long-distance \(\pi^- \to \pi^+ e^- e^-\) amplitude (2020), arXiv:2004.07404
[150] Aubert, J. J., The ratio of the nucleon structure functions \(F 2_n\) for iron and deuterium, Phys. Lett., 123b, 275-278 (1983)
[151] Savage, M. J., Nuclear physics from QCD : The anticipated impact of exa-scale computing, Proceedings, 9th Conference on Quark Confinement and the Hadron Spectrum: Madrid, Spain, 30 Aug-3 Sep 2010. Proceedings, 9th Conference on Quark Confinement and the Hadron Spectrum: Madrid, Spain, 30 Aug-3 Sep 2010, AIP Conf. Proc., 1343, 30-38 (2011), arXiv:1012.0876
[152] Smit, J., Introduction to quantum fields on a lattice, (Cambridge Lecture Notes in Physics (2002), Cambridge University Press) · Zbl 1021.81043
[153] Lüscher, M., Computational strategies in lattice QCD, (Les Houches Summer School: Session 93: Modern Perspectives in Lattice QCD: Quantum Field Theory and High Performance Computing (2010)), 331-399, arXiv:1002.4232
[154] (Lin, H.-W.; Meyer, H. B., Lattice QCD for Nuclear Physics, vol. 889 (2015), Springer) · Zbl 1303.81005
[155] Drischler, C.; Haxton, W.; McElvain, K.; Mereghetti, E.; Nicholson, A.; Vranas, P.; Walker-Loud, A., Towards grounding nuclear physics in QCD (2019), arXiv:1910.07961
[156] Symanzik, K., Continuum limit and improved action in lattice theories: (I). Principles and \(\phi^4\) theory, Nuclear Phys. B, 226, 187-204 (1983)
[157] Symanzik, K., Continuum limit and improved action in lattice theories: (II). O(N) non-linear sigma model in perturbation theory, Nuclear Phys. B, 226, 205-227 (1983)
[158] Lüscher, M.; Weisz, P., Computation of the action for on-shell improved lattice gauge theories at weak coupling, Phys. Lett., 158b, 250-254 (1985)
[159] Lüscher, M.; Weisz, P., On-shell improved lattice gauge theories, Comm. Math. Phys.. Comm. Math. Phys., Commun. Math. Phys., 98, 433 (1985), (erratum) · Zbl 1223.81148
[160] Alford, M. G.; Dimm, W.; Lepage, G. P.; Hockney, G.; Mackenzie, P. B., Lattice QCD on small computers, Phys. Lett. B, 361, 87-94 (1995), arXiv:hep-lat/9507010
[161] Lüscher, M.; Sint, S.; Sommer, R.; Weisz, P., Chiral symmetry and O(a) improvement in lattice QCD, Nuclear Phys. B, 478, 365-400 (1996), arXiv:hep-lat/9605038
[162] Lüscher, M.; Sint, S.; Sommer, R.; Weisz, P.; Wolff, U., Nonperturbative O(a) improvement of lattice QCD, Nuclear Phys. B, 491, 323-343 (1997), arXiv:hep-lat/9609035
[163] Sheikholeslami, B.; Wohlert, R., Improved continuum limit lattice action for QCD with wilson Fermions, Nuclear Phys. B, 259, 572 (1985)
[164] Frezzotti, R.; Grassi, P. A.; Sint, S.; Weisz, P., Lattice QCD with a chirally twisted mass term, J. High Energy Phys., 8, 58 (2001), arXiv:hep-lat/0101001
[165] Kogut, J. B.; Susskind, L., Hamiltonian formulation of Wilson’s lattice gauge theories, Phys. Rev. D, 11, 395-408 (1975)
[166] Bazavov, A., Nonperturbative QCD simulations with 2+1 flavors of improved staggered quarks, Rev. Modern Phys., 82, 1349-1417 (2010), arXiv:0903.3598
[167] Kaplan, D. B., A method for simulating chiral fermions on the lattice, Phys. Lett. B, 288, 342-347 (1992), arXiv:hep-lat/9206013
[168] Shamir, Y., Chiral fermions from lattice boundaries, Nuclear Phys. B, 406, 90-106 (1993), arXiv:hep-lat/9303005
[169] Furman, V.; Shamir, Y., Axial symmetries in lattice QCD with kaplan fermions, Nuclear Phys. B, 439, 54-78 (1995), arXiv:hep-lat/9405004
[170] Narayanan, R.; Neuberger, H., A construction of lattice chiral gauge theories, Nuclear Phys. B, 443, 305-385 (1995), arXiv:hep-th/9411108 · Zbl 0990.81578
[171] Neuberger, H., Exactly massless quarks on the lattice, Phys. Lett. B, 417, 141-144 (1998), arXiv:hep-lat/9707022
[172] Ginsparg, P. H.; Wilson, K. G., A remnant of chiral symmetry on the lattice, Phys. Rev. D, 25, 2649 (1982)
[173] Hasenfratz, A.; Hasenfratz, P.; Niedermayer, F.; Hierl, D.; Schäfer, A., First results in QCD with 2+1 light flavors using the fixed-point action, Proceedings, 24th International Symposium on Lattice Field Theory (Lattice 2006): Tucson, USA, July 23-28, 2006. Proceedings, 24th International Symposium on Lattice Field Theory (Lattice 2006): Tucson, USA, July 23-28, 2006, PoS Lattice, 2006, 178 (2006), arXiv:hep-lat/0610096
[174] Gattringer, C., A new approach to Ginsparg-Wilson fermions, Phys. Rev. D, 63, Article 114501 pp. (2001), arXiv:hep-lat/0003005
[175] Gattringer, C., Quenched spectroscopy with fixed point and chirally improved fermions, Nuclear Phys. B, 677, 3-51 (2004), arXiv:hep-lat/0307013
[176] Brower, R. C.; Neff, H.; Orginos, K., The Möbius domain wall fermion algorithm, Comput. Phys. Comm., 220, 1-19 (2017), arXiv:1206.5214 · Zbl 1411.81214
[177] Chiu, T.-W., Locality of optimal lattice domain wall fermions, Phys. Lett. B, 552, 97-100 (2003), arXiv:hep-lat/0211032 · Zbl 1005.81061
[178] Ogawa, K.; Chiu, T.-W.; Hsieh, T.-H.; Liu, C.; Zhu, Y., One-flavor algorithm for wilson and domain-wall fermions, PoS Lattice, 2009, 033 (2009), arXiv:0911.5532
[179] Chen, Y.-C.; Chiu, T.-W., Exact pseudofermion action for Monte Carlo simulation of domain-wall Fermion, Phys. Lett. B, 738, 55-60 (2014), arXiv:1403.1683
[180] Jung, C.; Kelly, C.; Mawhinney, R.; Murphy, D., Domain wall Fermion QCD with the exact one flavor algorithm, Phys. Rev. D, 97, 5, Article 054503 pp. (2018), arXiv:1706.05843
[181] Duane, S.; Kennedy, A. D.; Pendleton, B. J.; Roweth, D., Hybrid Monte Carlo, Phys. Lett. B, 195, 216-222 (1987)
[182] Collins, S.; Bali, G.; Schäfer, A.; Bali, G.; Braun, V.; Gattringer, C.; Göckeler, M.; Schäfer, A.; Weisz, P.; Wettig, T., Disconnected contributions to hadronic structure: a new method for stochastic noise reduction, PoS Lattice, 2007, 141 (2007), arXiv:0709.3217
[183] Alexandrou, C.; Constantinou, M.; Drach, V.; Hadjiyiannakou, K.; Jansen, K.; Koutsou, G.; Strelchenko, A.; Vaquero, A., Evaluation of disconnected quark loops for hadron structure using GPUs, Comput. Phys. Comm., 185, 1370-1382 (2014), arXiv:1309.2256
[184] Bali, G. S.; Collins, S.; Schäfer, A., Effective noise reduction techniques for disconnected loops in lattice QCD, Comput. Phys. Comm., 181, 1570-1583 (2010), arXiv:0910.3970 · Zbl 1215.81120
[185] Gambhir, A. S.; Stathopoulos, A.; Orginos, K.; Yoon, B.; Gupta, R.; Syritsyn, S., Algorithms for disconnected diagrams in lattice QCD, PoS Lattice, 2016, 265 (2016), arXiv:1611.01193
[186] Bali, G.; Collins, S.; Frommer, A.; Kahl, K.; Kanamori, I.; Müller, B.; Rottmann, M.; Simeth, J., (Approximate) low-mode averaging with a new multigrid eigensolver, PoS Lattice, 2015, 350 (2015), arXiv:1509.06865
[187] Brannick, J.; Brower, R. C.; Clark, M. A.; Osborn, J. C.; Rebbi, C., Adaptive multigrid algorithm for lattice QCD, Phys. Rev. Lett., 100, 41601 (2008), arXiv:0707.4018
[188] Frommer, A.; Kahl, K.; Krieg, S.; Leder, B.; Rottmann, M., Adaptive aggregation based domain decomposition multigrid for the lattice Wilson Dirac operator, SIAM J. Sci. Comput., 36, A1581-A1608 (2014), arXiv:1303.1377 · Zbl 1302.81159
[189] Clark, M. A.; Babich, R.; Barros, K.; Brower, R. C.; Rebbi, C., Solving lattice QCD systems of equations using mixed precision solvers on GPUs, Comput. Phys. Comm., 181, 1517-1528 (2010), arXiv:0911.3191 · Zbl 1215.81124
[190] Babich, R.; Clark, M. A.; Joó, B.; Shi, G.; Brower, R. C.; Gottlieb, S., Scaling lattice QCD beyond 100 GPUs, (SC11 International Conference for High Performance Computing, Networking, Storage and Analysis Seattle, Washington, November 12-18, 2011 (2011)), arXiv:1109.2935. URL http://inspirehep.net/record/927455/files/arXiv:1109.2935.pdf
[191] Feynman, R. P.; Kislinger, M.; Ravndal, F., Current matrix elements from a relativistic quark model, Phys. Rev. D, 3, 2706-2732 (1971)
[192] Detmold, W.; Orginos, K., Nuclear correlation functions in lattice QCD, Phys. Rev. D, 87, 11, Article 114512 pp. (2013), arXiv:1207.1452
[193] Basak, S.; Edwards, R.; Fleming, G. T.; Heller, U. M.; Morningstar, C.; Richards, D.; Sato, I.; Wallace, S. J., Clebsch-gordan construction of lattice interpolating fields for excited baryons, Phys. Rev. D, 72, Article 074501 pp. (2005), arXiv:hep-lat/0508018
[194] Beane, S. R.; Bedaque, P. F.; Orginos, K.; Savage, M. J., I = 2 pi-pi scattering from fully-dynamical mixed-action lattice QCD, Phys. Rev. D, 73, Article 054503 pp. (2006), arXiv:hep-lat/0506013
[195] Beane, S. R.; Chang, E.; Detmold, W.; Lin, H. W.; Luu, T. C.; Orginos, K.; Parreño, A.; Savage, M. J.; Torok, A.; Walker-Loud, A., \( I = 2 \pi \piS \)-Wave scattering phase shift from lattice QCD, Phys. Rev. D, 85, Article 034505 pp. (2012), arXiv:1107.5023
[196] Shi, Z.; Detmold, W., Investigations of QCD at non-zero isospin density, Proceedings, 29th International Symposium on Lattice Field Theory (Lattice 2011): Squaw Valley, Lake Tahoe, USA, July 10-16, 2011. Proceedings, 29th International Symposium on Lattice Field Theory (Lattice 2011): Squaw Valley, Lake Tahoe, USA, July 10-16, 2011, PoS Lattice, 2011, 328 (2011), arXiv:1111.1656
[197] Detmold, W.; Orginos, K.; Shi, Z., Lattice QCD at non-zero isospin chemical potential, Phys. Rev. D, 86, Article 054507 pp. (2012), arXiv:1205.4224
[198] Dudek, J. J.; Edwards, R. G.; Thomas, C. E., \(S\)- And \(D\)-wave phase shifts in isospin-\(2 \pi \pi\) scattering from lattice QCD, Phys. Rev. D, 86, Article 034031 pp. (2012), arXiv:1203.6041
[199] Detmold, W.; Savage, M. J., A method to study complex systems of mesons in lattice QCD, Phys. Rev. D, 82, 14511 (2010), arXiv:1001.2768
[200] Doi, T.; Endres, M. G., Unified contraction algorithm for multi-baryon correlators on the lattice, Comput. Phys. Comm., 184, 117 (2013), arXiv:1205.0585
[201] Günther, J.; Toth, B. C.; Varnhorst, L., Recursive approach to determine correlation functions in multibaryon systems, Phys. Rev. D, 87, 9, 94513 (2013), arXiv:1301.4895
[202] Martinelli, G.; Sachrajda, C. T., A lattice study of nucleon structure, Nuclear Phys. B, 316, 355-372 (1989)
[203] Martinelli, G.; Sachrajda, C. T., A lattice calculation of the pion’s form-factor and structure function, Nuclear Phys. B, 306, 865-889 (1988)
[204] Fucito, F.; Parisi, G.; Petrarca, S., First evaluation of \(g_A / g_V\) in lattice QCD in the quenched approximation, Phys. Lett. B, 115, 148-150 (1982)
[205] Bernard, C. W.; Draper, T.; Olynyk, K.; Rushton, M., Lattice QCD calculation of some baryon magnetic moments, Phys. Rev. Lett., 49, 1076 (1982)
[206] Martinelli, G.; Parisi, G.; Petronzio, R.; Rapuano, F., The proton and neutron magnetic moments in lattice QCD, Phys. Lett. B, 116, 434-436 (1982)
[207] Detmold, W., Flavor singlet physics in lattice QCD with background fields, Phys. Rev. D, 71, Article 054506 pp. (2005), arXiv:hep-lat/0410011
[208] ’t Hooft, G., A property of electric and magnetic flux in non-abelian gauge theories, Nuclear Phys. B, 153, 141-160 (1979), http://www.sciencedirect.com/science/article/pii/0550321379905959
[209] Tiburzi, B. C., Volume effects for pion two-point functions in constant electric and magnetic fields, Phys. Lett. B, 674, 4, 336-343 (2009)
[210] Davoudi, Z.; Detmold, W., Composite vector particles in external electromagnetic fields, Phys. Rev. D, 93, 1, Article 014509 pp. (2016), arXiv:1510.02444
[211] Davoudi, Z.; Detmold, W., Implementation of general background electromagnetic fields on a periodic hypercubic lattice, Phys. Rev. D, 92, 7, Article 074506 pp. (2015), arXiv:1507.01908
[212] Bouchard, C.; Chang, C. C.; Orginos, K.; Richards, D., Matrix elements from moments of correlation functions, Proceedings, 34th International Symposium on Lattice Field Theory (Lattice 2016): Southampton, UK, July 24-30, 2016. Proceedings, 34th International Symposium on Lattice Field Theory (Lattice 2016): Southampton, UK, July 24-30, 2016, PoS Lattice, 2016, 170 (2016), arXiv:1610.02354
[213] Can, K., Lattice evaluation of the Compton amplitude employing the Feynman-Hellmann theorem (2020), arXiv:2007.01523
[214] Bouchard, C.; Chang, C. C.; Kurth, T.; Orginos, K.; Walker-Loud, A., On the Feynman-Hellmann theorem in quantum field theory and the calculation of matrix elements, Phys. Rev. D, 96, 1, 14504 (2017), arXiv:1612.06963
[215] Bulava, J.; Donnellan, M.; Sommer, R., On the computation of hadron-to-hadron transition matrix elements in lattice QCD, J. High Energy Phys., 01, 140 (2012), arXiv:1108.3774 · Zbl 1306.81329
[216] Lüscher, M., Two particle states on a torus and their relation to the scattering matrix, Nuclear Phys. B, 354, 531-578 (1991)
[217] Lellouch, L.; Lüscher, M., Weak transition matrix elements from finite volume correlation functions, Comm. Math. Phys., 219, 31-44 (2001), arXiv:hep-lat/0003023 · Zbl 0989.81138
[218] Rummukainen, K.; Gottlieb, S. A., Resonance scattering phase shifts on a nonrest frame lattice, Nuclear Phys. B, 450, 397-436 (1995), arXiv:hep-lat/9503028
[219] Beane, S. R.; Bedaque, P. F.; Parreño, A.; Savage, M. J., Two nucleons on a lattice, Phys. Lett. B, 585, 106-114 (2004), arXiv:hep-lat/0312004
[220] Kim, C.; Sachrajda, C.; Sharpe, S. R., Finite-volume effects for two-hadron states in moving frames, Nuclear Phys. B, 727, 218-243 (2005), arXiv:hep-lat/0507006
[221] He, S.; Feng, X.; Liu, C., Two particle states and the S-matrix elements in multi-channel scattering, J. High Energy Phys., 7, 11 (2005), arXiv:hep-lat/0504019
[222] Davoudi, Z.; Savage, M. J., Improving the volume dependence of two-body binding energies calculated with lattice QCD, Phys. Rev. D, 84, Article 114502 pp. (2011), arXiv:1108.5371
[223] Leskovec, L.; Prelovsek, S., Scattering phase shifts for two particles of different mass and non-zero total momentum in lattice QCD, Phys. Rev. D, 85, Article 114507 pp. (2012), arXiv:1202.2145
[224] Hansen, M. T.; Sharpe, S. R., Multiple-channel generalization of Lellouch-Lüscher formula, Phys. Rev. D, 86, 16007 (2012), arXiv:1204.0826
[225] Briceño, R. A.; Davoudi, Z., Moving multichannel systems in a finite volume with application to proton-proton fusion, Phys. Rev. D, 88, 9, 94507 (2013), arXiv:1204.1110
[226] Göckeler, M.; Horsley, R.; Lage, M.; Meißner, U. G.; Rakow, P. E.L.; Rusetsky, A.; Schierholz, G.; Zanotti, J. M., Scattering phases for meson and baryon resonances on general moving-frame lattices, Phys. Rev. D, 86, 94513 (2012), arXiv:1206.4141
[227] Briceño, R. A.; Davoudi, Z.; Luu, T. C., Two-nucleon systems in a finite volume: (I) quantization conditions, Phys. Rev. D, 88, 3, 34502 (2013), arXiv:1305.4903
[228] Feng, X.; Li, X.; Liu, C., Two particle states in an asymmetric box and the elastic scattering phases, Phys. Rev. D, 70, 14505 (2004), arXiv:hep-lat/0404001
[229] Lee, F. X.; Alexandru, A., Scattering phase-shift formulas for mesons and baryons in elongated boxes, Phys. Rev. D, 96, 5, 54508 (2017), arXiv:1706.00262
[230] Bedaque, P. F., Aharonov-bohm effect and nucleon nucleon phase shifts on the lattice, Phys. Lett. B, 593, 82-88 (2004), arXiv:nucl-th/0402051
[231] Luu, T.; Savage, M. J., Extracting scattering phase-shifts in higher partial-waves from lattice QCD calculations, Phys. Rev. D, 83, Article 114508 pp. (2011), arXiv:1101.3347
[232] Briceño, R. A.; Davoudi, Z.; Luu, T. C.; Savage, M. J., Two-baryon systems with twisted boundary conditions, Phys. Rev. D, 89, 7, 74509 (2014), arXiv:1311.7686
[233] Briceño, R. A.; Davoudi, Z.; Luu, T.; Savage, M. J., Two-nucleon systems in a finite volume. II. \( {}^3 S_1 -^3 D_1\) coupled channels and the deuteron, Phys. Rev. D, 88, 11, Article 114507 pp. (2013), arXiv:1309.3556
[234] Briceño, R. A., Two-particle multichannel systems in a finite volume with arbitrary spin, Phys. Rev. D, 89, 7, 74507 (2014), arXiv:1401.3312
[235] Briceño, R. A.; Dudek, J. J.; Young, R. D., Scattering processes and resonances from lattice QCD, Rev. Modern Phys., 90, 2, 25001 (2018), arXiv:1706.06223
[236] Polejaeva, K.; Rusetsky, A., Three particles in a finite volume, Eur. Phys. J. A, 48, 67 (2012), arXiv:1203.1241
[237] Briceño, R. A.; Davoudi, Z., Three-particle scattering amplitudes from a finite volume formalism, Phys. Rev. D, 87, 9, 94507 (2013), arXiv:1212.3398
[238] Hansen, M. T.; Sharpe, S. R., Relativistic, model-independent, three-particle quantization condition, Phys. Rev. D, 90, 11, Article 116003 pp. (2014), arXiv:1408.5933
[239] Hansen, M. T.; Sharpe, S. R., Expressing the three-particle finite-volume spectrum in terms of the three-to-three scattering amplitude, Phys. Rev. D, 92, 11, Article 114509 pp. (2015), arXiv:1504.04248
[240] Hammer, H.-W.; Pang, J.-Y.; Rusetsky, A., Three-particle quantization condition in a finite volume: 1. The role of the three-particle force, J. High Energy Phys., 9, 109 (2017), arXiv:1706.07700
[241] Hammer, H. W.; Pang, J. Y.; Rusetsky, A., Three particle quantization condition in a finite volume: 2. general formalism and the analysis of data, J. High Energy Phys., 10, 115 (2017), arXiv:1707.02176 · Zbl 1383.81156
[242] Guo, P.; Gasparian, V., An solvable three-body model in finite volume, Phys. Lett. B, 774, 441-445 (2017), arXiv:1701.00438 · Zbl 1403.81082
[243] Mai, M.; Döring, M., Three-body unitarity in the finite volume (2017), arXiv:1709.08222
[244] Briceño, R. A.; Hansen, M. T.; Sharpe, S. R., Relating the finite-volume spectrum and the two-and-three-particle \(S\) matrix for relativistic systems of identical scalar particles, Phys. Rev. D, 95, 7, 74510 (2017), arXiv:1701.07465
[245] Döring, M. A.; Hammer, H. W.; Mai, M.; Pang, J. Y.; Rusetsky, A.; Wu, J., Three-body spectrum in a finite volume: the role of cubic symmetry, Phys. Rev. D, 97, 11, Article 114508 pp. (2018), arXiv:1802.03362
[246] Briceño, R. A.; Hansen, M. T.; Sharpe, S. R., Three-particle systems with resonant subprocesses in a finite volume, Phys. Rev. D, 99, 1, 14516 (2019), arXiv:1810.01429
[247] Romero-López, F.; Sharpe, S. R.; Blanton, T. D.; Briceño, R. A.; Hansen, M. T., Numerical exploration of three relativistic particles in a finite volume including two-particle resonances and bound states, J. High Energy Phys., 10, 007 (2019), arXiv:1908.02411 · Zbl 1427.81094
[248] Jackura, A. W.; Dawid, S. M.; Fernández-Ramírez, C.; Mathieu, V.; Mikhasenko, M.; Pilloni, A.; Sharpe, S. R.; Szczepaniak, A. P., Equivalence of three-particle scattering formalisms, Phys. Rev. D, 100, 3, 34508 (2019), arXiv:1905.12007
[249] Hansen, M. T.; Romero-López, F.; Sharpe, S. R., Generalizing the relativistic quantization condition to include all three-pion isospin channels, J. High Energy Phys., 07, 047 (2020), arXiv:2003.10974
[250] Christ, N. H.; Kim, C.; Yamazaki, T., Finite volume corrections to the two-particle decay of states with non-zero momentum, Phys. Rev. D, 72, Article 114506 pp. (2005), arXiv:hep-lat/0507009
[251] Meyer, H. B., Lattice QCD and the timelike pion form factor, Phys. Rev. Lett., 107, 72002 (2011), arXiv:1105.1892
[252] Bernard, V.; Hoja, D.; Meißner, U. G.; Rusetsky, A., Matrix elements of unstable states, J. High Energy Phys., 9, 23 (2012), arXiv:1205.4642 · Zbl 1397.81193
[253] Feng, X.; Aoki, S.; Hashimoto, S.; Kaneko, T., Timelike pion form factor in lattice QCD, Phys. Rev. D, 91, 5, 54504 (2015), arXiv:1412.6319
[254] Briceño, R. A.; Hansen, M. T., Relativistic, model-independent, multichannel \(2 \to 2\) transition amplitudes in a finite volume, Phys. Rev. D, 94, 1, 13008 (2016), arXiv:1509.08507
[255] Briceño, R. A.; Hansen, M. T.; Walker-Loud, A., Multichannel \(1 \to 2\) transition amplitudes in a finite volume, Phys. Rev. D, 91, 3, Article 034501 pp. (2015), arXiv:1406.5965
[256] Briceño, R. A.; Hansen, M. T., Multichannel \(0 \to 2\) and \(1 \to 2\) transition amplitudes for arbitrary spin particles in a finite volume, Phys. Rev. D, 92, 7, 74509 (2015), arXiv:1502.04314
[257] Christ, N. H.; Feng, X.; Martinelli, G.; Sachrajda, C. T., Effects of finite volume on the \(K_L- K_S\) mass difference, Phys. Rev. D, 91, 11, Article 114510 pp. (2015), arXiv:1504.01170
[258] Baroni, A.; Briceño, R. A.; Hansen, M. T.; Ortega-Gama, F. G., Form factors of two-hadron states from a covariant finite-volume formalism (2018), arXiv:1812.10504
[259] Briceño, R. A.; Davoudi, Z.; Hansen, M. T.; Schindler, M. R.; Baroni, A., Long-range electroweak amplitudes of single hadrons from Euclidean finite-volume correlation functions, Phys. Rev. D, 101, 1, 14509 (2020), arXiv:1911.04036
[260] Feng, X.; Jin, L.-C.; Wang, Z.-Y.; Zhang, Z., Finite-volume formalism in the \(2 \longrightarrow^{H_I + H_I} 2\) transition: an application to the lattice QCD calculation of double beta decays (2020), arXiv:2005.01956
[261] Davoudi, Z.; Kadam, S. V., Two-neutrino double-beta decay in pionless effective field theory from a Euclidean finite-volume correlation function (2020), arXiv:2007.15542
[262] Sato, I.; Bedaque, P. F., Fitting two nucleons inside a box: Exponentially suppressed corrections to the Lüscher’s formula, Phys. Rev. D, 76, 34502 (2007), arXiv:hep-lat/0702021
[263] Lu, H.-H., Simulations of subatomic many-body physics on a quantum frequency processor, Phys. Rev. A, 100, 1, 12320 (2019), arXiv:1810.03959
[264] Kaplan, D. B.; Savage, M. J.; Wise, M. B., Nucleon - nucleon scattering from effective field theory, Nuclear Phys. B, 478, 629-659 (1996), arXiv:nucl-th/9605002
[265] Kaplan, D. B.; Savage, M. J.; Wise, M. B., A new expansion for nucleon-nucleon interactions, Phys. Lett. B, 424, 390-396 (1998), arXiv:nucl-th/9801034
[266] Kaplan, D. B.; Savage, M. J.; Wise, M. B., Two nucleon systems from effective field theory, Nuclear Phys. B, 534, 329-355 (1998), arXiv:nucl-th/9802075
[267] van Kolck, U., Effective field theory of short range forces, Nuclear Phys. A, 645, 273-302 (1999), arXiv:nucl-th/9808007
[268] Bedaque, P. F.; Hammer, H.; van Kolck, U., Renormalization of the three-body system with short range interactions, Phys. Rev. Lett., 82, 463-467 (1999), arXiv:nucl-th/9809025
[269] Chen, J.-W.; Rupak, G.; Savage, M. J., Nucleon-nucleon effective field theory without pions, Nuclear Phys. A, 653, 386-412 (1999), arXiv:nucl-th/9902056
[270] Bedaque, P. F.; Rupak, G.; Griesshammer, H. W.; Hammer, H.-W., Low-energy expansion in the three-body system to all orders and the triton channel, Nuclear Phys. A, 714, 589-610 (2003), arXiv:nucl-th/0207034 · Zbl 1006.81558
[271] Bedaque, P. F.; van Kolck, U., Effective field theory for few nucleon systems, Ann. Rev. Nucl. Part. Sci., 52, 339-396 (2002), arXiv:nucl-th/0203055
[272] Epelbaum, E.; Hammer, H.-W.; Meissner, U.-G., Modern theory of nuclear forces, Rev. Modern Phys., 81, 1773-1825 (2009), arXiv:0811.1338
[273] Machleidt, R.; Entem, D., Chiral effective field theory and nuclear forces, Phys. Rep., 503, 1-75 (2011), arXiv:1105.2919
[274] Weinberg, S., Nuclear forces from chiral Lagrangians, Phys. Lett. B, 251, 288-292 (1990)
[275] Weinberg, S., Effective chiral Lagrangians for nucleon - pion interactions and nuclear forces, Nuclear Phys. B, 363, 3-18 (1991)
[276] Fleming, S.; Mehen, T.; Stewart, I. W., NNLO corrections to nucleon-nucleon scattering and perturbative pions, Nuclear Phys. A, 677, 313-366 (2000), arXiv:nucl-th/9911001
[277] Beane, S.; Bedaque, P. F.; Savage, M.; van Kolck, U., Towards a perturbative theory of nuclear forces, Nuclear Phys. A, 700, 377-402 (2002), arXiv:nucl-th/0104030 · Zbl 0985.81809
[278] Nogga, A.; Timmermans, R.; van Kolck, U., Renormalization of one-pion exchange and power counting, Phys. Rev. C, 72, Article 054006 pp. (2005), arXiv:nucl-th/0506005
[279] Birse, M. C., Power counting with one-pion exchange, Phys. Rev. C, 74, Article 014003 pp. (2006), arXiv:nucl-th/0507077
[280] Pavón Valderrama, M.; Sánchez Sánchez, M.; Yang, C.; Long, B.; Carbonell, J.; van Kolck, U., Power counting in peripheral partial waves: The singlet channels, Phys. Rev. C, 95, 5, Article 054001 pp. (2017), arXiv:1611.10175
[281] Wu, S.; Long, B., Perturbative \(N N\) scattering in chiral effective field theory, Phys. Rev. C, 99, 2, Article 024003 pp. (2019), arXiv:1807.04407
[282] Kaplan, D. B., On the convergence of nuclear effective field theory with perturbative pions (2019), arXiv:1905.07485
[283] Beane, S. R.; Bedaque, P. F.; Haxton, W. C.; Phillips, D. R.; Savage, M. J., From hadrons to nuclei: Crossing the border, 133-269 (2000), arXiv:nucl-th/0008064 · Zbl 1019.81063
[284] van Kolck, U., The problem of renormalization of chiral nuclear forces, Front. Phys., 8, 79 (2020), arXiv:2003.06721
[285] Pavón Valderrama, M.; Phillips, D. R., Power counting of contact-range currents in effective field theory, Phys. Rev. Lett., 114, 8, Article 082502 pp. (2015), arXiv:1407.0437
[286] Cirigliano, V.; Dekens, W.; De Vries, J.; Graesser, M. L.; Mereghetti, E.; Pastore, S.; Van Kolck, U., New leading contribution to neutrinoless double-\( \beta\) decay, Phys. Rev. Lett., 120, 20, Article 202001 pp. (2018), arXiv:1802.10097
[287] de Vries, J.; Gnech, A.; Shain, S., Strong CP violation in nuclear physics (2020), arXiv:2007.04927
[288] Bedaque, P. F.; Sato, I.; Walker-Loud, A., Finite volume corrections to pi-pi scattering, Phys. Rev. D, 73, Article 074501 pp. (2006), arXiv:hep-lat/0601033
[289] Gongyo, S., Most strange dibaryon from lattice QCD, Phys. Rev. Lett., 120, 21, Article 212001 pp. (2018), arXiv:1709.00654
[290] Miyamoto, T., \( \Lambda_c N\) interaction from lattice QCD and its application to \(\Lambda_c\) hypernuclei, Nuclear Phys. A, 971, 113-129 (2018), arXiv:1710.05545
[291] Iritani, T., \( N \Omega\) Dibaryon from lattice QCD near the physical point, Phys. Lett. B, 792, 284-289 (2019), arXiv:1810.03416
[292] Aoki, S.; Doi, T.; Hatsuda, T.; Ikeda, Y.; Inoue, T.; Ishii, N.; Murano, K.; Nemura, H.; Sasaki, K., Lattice QCD approach to nuclear physics, PTEP, 2012, 01a105 (2012), arXiv:1206.5088
[293] Ikeda, Y.; Aoki, S.; Doi, T.; Gongyo, S.; Hatsuda, T.; Inoue, T.; Iritani, T.; Ishii, N.; Murano, K.; Sasaki, K., Fate of the tetraquark candidate \(Z_c(3900)\) from lattice QCD, Phys. Rev. Lett., 117, 24, Article 242001 pp. (2016), arXiv:1602.03465
[294] Kawai, D., \( I = 2 \pi \pi\) scattering phase shift from the HAL QCD method with the LapH smearing, PTEP, 2018, 4, 043b04 (2018), arXiv:1711.01883
[295] Inoue, T.; Aoki, S.; Charron, B.; Doi, T.; Hatsuda, T.; Ikeda, Y.; Ishii, N.; Murano, K.; Nemura, H.; Sasaki, K., Medium-heavy nuclei from nucleon-nucleon interactions in lattice QCD, Phys. Rev. C, 91, 1, 11001 (2015), arXiv:1408.4892
[296] Sasaki, K., Coupled channel approach to hyperonic interactions from lattice QCD, Proceedings, 11th International Conference on Hypernuclear and Strange Particle Physics (HYP 2012): Barcelona, Spain, October 1-5, 2012. Proceedings, 11th International Conference on Hypernuclear and Strange Particle Physics (HYP 2012): Barcelona, Spain, October 1-5, 2012, Nuclear Phys. A, 914, 231-237 (2013)
[297] Inoue, T.; Aoki, S.; Doi, T.; Hatsuda, T.; Ikeda, Y.; Ishii, N.; Murano, K.; Nemura, H.; Sasaki, K., Equation of state for nucleonic matter and its quark mass dependence from the nuclear force in lattice QCD, Phys. Rev. Lett., 111, 11, Article 112503 pp. (2013), arXiv:1307.0299
[298] Murano, K.; Ishii, N.; Aoki, S.; Doi, T.; Hatsuda, T.; Ikeda, Y.; Inoue, T.; Nemura, H.; Sasaki, K., Spin-orbit force from lattice QCD, Phys. Lett. B, 735, 19-24 (2014), arXiv:1305.2293
[299] Kurth, T.; Ishii, N.; Doi, T.; Aoki, S.; Hatsuda, T., Phase shifts in \(I = 2 \pi \pi \)-scattering from two lattice approaches, J. High Energy Phys., 12, 15 (2013), arXiv:1305.4462
[300] Walker-Loud, A., Nuclear physics review, PoS Lattice, 2013, 013 (2014), arXiv:1401.8259
[301] Yamazaki, T.; Kuramashi, Y., Relation between scattering amplitude and Bethe-Salpeter wave function in quantum field theory, Phys. Rev. D, 96, 11, Article 114511 pp. (2017), arXiv:1709.09779
[302] Iritani, T.; Aoki, S.; Doi, T.; Gongyo, S.; Hatsuda, T.; Ikeda, Y.; Inoue, T.; Ishii, N.; Nemura, H.; Sasaki, K., Systematics of the HAL QCD potential at low energies in lattice QCD, Phys. Rev. D, 99, 1, 14514 (2019), arXiv:1805.02365
[303] Davoudi, Z., Lattice QCD input for nuclear structure and reactions, (35th International Symposium on Lattice Field Theory (Lattice 2017) Granada, Spain, June 18-24, 2017 (2017)), arXiv:1711.02020
[304] Orginos, K.; Parreño, A.; Savage, M. J.; Beane, S. R.; Chang, E.; Detmold, W., Two nucleon systems at \(m_\pi \sim 450\) MeV from lattice QCD, Phys. Rev. D, 92, 11, Article 114512 pp. (2015), arXiv:1508.07583
[305] Inoue, T., Nuclear physics from QCD on lattice, Proceedings, 8th International Workshop on Chiral Dynamics (CD15): Pisa, Italy, June 29-July 3, 2015. Proceedings, 8th International Workshop on Chiral Dynamics (CD15): Pisa, Italy, June 29-July 3, 2015, PoS, Cd15, 20 (2016), arXiv:1511.04871
[306] Inoue, T., Strange nuclear physics from QCD on lattice, Proceedings, 13th International Conference on Hypernuclear and Strange Particle Physics (HYP 2018): Portsmouth Virginia, USA, June 24-29, 2018. Proceedings, 13th International Conference on Hypernuclear and Strange Particle Physics (HYP 2018): Portsmouth Virginia, USA, June 24-29, 2018, AIP Conf. Proc., 2130, 1, 20002 (2019), arXiv:1809.08932
[307] Jaffe, R. L., Perhaps a stable dihyperon, Phys. Rev. Lett.. Phys. Rev. Lett., Phys. Rev. Lett., 38, 617-198 (1977), (erratum)
[308] Shanahan, P. E.; Thomas, A. W.; Young, R. D., Mass of the H-dibaryon, Phys. Rev. Lett., 107, 92004 (2011), arXiv:1106.2851
[309] Haidenbauer, J.; Meißner, U.-G., To bind or not to bind: The H-dibaryon in light of chiral effective field theory, Phys. Lett. B, 706, 100-105 (2011), arXiv:1109.3590
[310] Farrar, G. R., A stable H dibaryon: Dark matter candidate within QCD?, Classical, Stochastic and Quantum Gravity, String and Brane Cosmology. Proceedings, 7th Workshop, Peyresq Physics 7, Peyresq, France, June 22-28, 2002. Classical, Stochastic and Quantum Gravity, String and Brane Cosmology. Proceedings, 7th Workshop, Peyresq Physics 7, Peyresq, France, June 22-28, 2002, Internat. J. Theoret. Phys., 42, 1211-1218 (2003), [,582(2002)]. http://dx.doi.org/10.1023/a:1025702431127 · Zbl 1026.81502
[311] Shanahan, P.; Thomas, A.; Young, R., Updated analysis of the mass of the H dibaryon from lattice QCD, JPS Conf. Proc., 1, Article 013028 pp. (2014), arXiv:1308.1748
[312] Accardi, A.; Deshpande, A.; Meziani, Z. E.; Qiu, J. W., Electron ion collider: The next QCD frontier, Eur. Phys. J. A, 52, 9, 268 (2016), arXiv:1212.1701
[313] Beane, S. R.; Chang, E.; Cohen, S. D.; Detmold, W.; Lin, H. W.; Orginos, K.; Parreño, A.; Savage, M. J., Quarkonium-nucleus bound states from lattice QCD, Phys. Rev. D, 91, 11, Article 114503 pp. (2015), arXiv:1410.7069
[314] Lee, T. D.; Huang, K.; Yang, C. N., Eigenvalues and eigenfunctions of a bose system of hard spheres and its low-temperature properties, Phys. Rev., 106, 1135-1145 (1957) · Zbl 0077.45003
[315] Junnarkar, P.; Mathur, N., Deuteronlike heavy dibaryons from lattice quantum chromodynamics, Phys. Rev. Lett., 123, 16, Article 162003 pp. (2019), arXiv:1906.06054
[316] Wilson, D. J.; Briceño, R. A.; Dudek, J. J.; Edwards, R. G.; Thomas, C. E., Coupled \(\pi \pi , K \overline{K}\) scattering in \(P\)-wave and the \(\rho\) resonance from lattice QCD, Phys. Rev. D, 92, 9, 94502 (2015), arXiv:1507.02599
[317] Lang, C.; Leskovec, L.; Padmanath, M.; Prelovsek, S., Pion-nucleon scattering in the roper channel from lattice QCD, Phys. Rev. D, 95, 1, Article 014510 pp. (2017), arXiv:1610.01422
[318] Briceño, R. A.; Dudek, J. J.; Edwards, R. G.; Wilson, D. J., Isoscalar \(\pi \pi\) scattering and the \(\sigma\) meson resonance from QCD, Phys. Rev. Lett., 118, 2, 22002 (2017), arXiv:1607.05900
[319] Wu, J.-j.; Leinweber, D. B.; Liu, Z.-w.; Thomas, A. W., Structure of the roper resonance from lattice QCD constraints, Phys. Rev. D, 97, 9, Article 094509 pp. (2018), arXiv:1703.10715
[320] Brett, R.; Bulava, J.; Fallica, J.; Hanlon, A.; Hörz, B.; Morningstar, C., Determination of \(s\)- and \(p\)-wave \(I = 1 / 2 K \pi\) scattering amplitudes in \(N_{\operatorname{f}} = 2 + 1\) lattice QCD, Nuclear Phys. B, 932, 29-51 (2018), arXiv:1802.03100 · Zbl 1391.81203
[321] Guo, D.; Alexandru, A.; Molina, R.; Mai, M.; Döring, M., Extraction of isoscalar \(\pi \pi\) phase-shifts from lattice QCD, Phys. Rev. D, 98, 1, 14507 (2018), arXiv:1803.02897
[322] Skerbis, U.; Prelovsek, S., Nucleon-\( J / \psi\) and nucleon-\( \eta_c\) scattering in \(P_c\) pentaquark channels from LQCD, Phys. Rev. D, 99, 9, Article 094505 pp. (2019), arXiv:1811.02285
[323] Andersen, C.; Bulava, J.; Hörz, B.; Morningstar, C., The \(I = 1\) pion-pion scattering amplitude and timelike pion form factor from \(N_{\operatorname{f}} = 2 + 1\) lattice QCD, Nuclear Phys. B, 939, 145-173 (2019), arXiv:1808.05007 · Zbl 1409.81159
[324] Dudek, J. J.; Edwards, R. G.; Wilson, D. J., An \(a_0\) resonance in strongly coupled \(\pi \eta, K \overline{K}\) scattering from lattice QCD, Phys. Rev. D, 93, 9, 94506 (2016), arXiv:1602.05122
[325] Woss, A. J.; Thomas, C. E.; Dudek, J. J.; Edwards, R. G.; Wilson, D. J., The \(b_1\) resonance in coupled \(\pi \omega, \pi \phi\) scattering from lattice QCD (2019), arXiv:1904.04136
[326] Detmold, W.; Savage, M. J., Electroweak matrix elements in the two nucleon sector from lattice QCD, Nuclear Phys. A, 743, 170-193 (2004), arXiv:hep-lat/0403005
[327] Buchoff, M. I.; Luu, T. C.; Wasem, J., S-wave scattering of strangeness -3 baryons, Phys. Rev. D, 85, Article 094511 pp. (2012), arXiv:1201.3596
[328] Bour, S.; König, S.; Lee, D.; Hammer, H. W.; Meißner, U.-G., Topological phases for bound states moving in a finite volume, Phys. Rev. D, 84, 91503 (2011), arXiv:1107.1272
[329] König, S.; Lee, D.; Hammer, H. W., Volume dependence of bound states with angular momentum, Phys. Rev. Lett., 107, Article 112001 pp. (2011), arXiv:1103.4468
[330] Beane, S. R.; Chang, E.; Davoudi, Z.; Detmold, W.; Orginos, K.; Parreño, A.; Savage, M. J.; Tiburzi, B. C.; Shanahan, P. E.; Wagman, M. L.; Winter, F., Comment on “Are two nucleons bound in lattice QCD for heavy quark masses? - Sanity check with Lüscher’s finite volume formula -” (2017), arXiv:1705.09239
[331] Hansen, M. T.; Sharpe, S. R., Lattice QCD and three-particle decays of resonances, Ann. Rev. Nucl. Part. Sci., 69, 65-107 (2019), arXiv:1901.00483
[332] Mai, M.; Döring, M., Finite-volume spectrum of \(\pi^+ \pi^+\) and \(\pi^+ \pi^+ \pi^+\) systems, Phys. Rev. Lett., 122, 6, 62503 (2019), arXiv:1807.04746
[333] Blanton, T. D.; Romero-López, F.; Sharpe, S. R., Implementing the three-particle quantization condition including higher partial waves, Jhep, 3, 106 (2019), arXiv:1901.07095
[334] Mai, M.; Döring, M.; Culver, C.; Alexandru, A., Three-body unitarity versus finite-volume \(\pi^+ \pi^+ \pi^+\) spectrum from lattice QCD (2019), arXiv:1909.05749
[335] Culver, C.; Mai, M.; Brett, R.; Alexandru, A.; Döring, M., Three body spectrum from lattice QCD (2019), arXiv:1911.09047
[336] Kreuzer, S.; Hammer, H.-W., The Triton in a finite volume, Phys. Lett. B, 694, 424-429 (2011), arXiv:1008.4499
[337] Meißner, U.-G.; Ríos, G.; Rusetsky, A., Spectrum of three-body bound states in a finite volume, Phys. Rev. Lett.. Phys. Rev. Lett., Phys. Rev. Lett., 117, 9, 069902 (2016), (erratum)
[338] Meng, Y.; Liu, C.; Meißner, U.-G.; Rusetsky, A., Three-particle bound states in a finite volume: unequal masses and higher partial waves, Phys. Rev. D, 98, 1, Article 014508 pp. (2018), arXiv:1712.08464
[339] König, S.; Lee, D., Volume dependence of N-body bound states, Phys. Lett. B, 779, 9-15 (2018), arXiv:1701.00279
[340] Hansen, M. T.; Meyer, H. B.; Robaina, D., From deep inelastic scattering to heavy-flavor semileptonic decays: Total rates into multihadron final states from lattice QCD, Phys. Rev. D, 96, 9, 94513 (2017), arXiv:1704.08993
[341] Bulava, J.; Hansen, M. T., Scattering amplitudes from finite-volume spectral functions, Phys. Rev. D, 100, 3, 34521 (2019), arXiv:1903.11735
[342] Maiani, L.; Testa, M., Final state interactions from euclidean correlation functions, Phys. Lett. B, 245, 585-590 (1990)
[343] Beane, S. R.; Detmold, W.; Savage, M. J., n-Boson energies at finite volume and three-Boson interactions, Phys. Rev. D, 76, 74507 (2007), arXiv:0707.1670
[344] Hansen, M. T.; Sharpe, S. R., Threshold expansion of the three-particle quantization condition, Phys. Rev. D. Phys. Rev. D, Phys. Rev. D, 96, 3, 039901 (2017), (erratum). http://dx.doi.org/10.1103/PhysRevD.96.039901
[345] Beane, S., Charged multi-hadron systems in lattice QCD+QED (2020), arXiv:2003.12130
[346] Detmold, W.; Savage, M. J.; Torok, A.; Beane, S. R.; Luu, T. C.; Orginos, K.; Parreño, A., Multi-pion states in lattice QCD and the charged-pion condensate, Phys. Rev. D, 78, 14507 (2008), arXiv:0803.2728
[347] Hörz, B.; Hanlon, A., Two- and three-pion finite-volume spectra at maximal isospin from lattice QCD, Phys. Rev. Lett., 123, 14, Article 142002 pp. (2019), arXiv:1905.04277
[348] Bai, Z., Standard model prediction for direct CP violation in \(K \to \pi \pi\) decay, Phys. Rev. Lett., 115, 21, Article 212001 pp. (2015), arXiv:1505.07863
[349] Blum, T., \( K \to \pi \pi \Delta I = 3 / 2\) decay amplitude in the continuum limit, Phys. Rev. D, 91, 7, 74502 (2015), arXiv:1502.00263
[350] Briceño, R. A.; Dudek, J. J.; Edwards, R. G.; Shultz, C. J.; Thomas, C. E.; Wilson, D. J., The \(\pi \pi \to \pi \gamma^\star\) amplitude and the resonant \(\rho \to \pi \gamma^\star\) transition from lattice QCD, Phys. Rev. D, 93, 11, Article 114508 pp. (2016), arXiv:1604.03530
[351] Meyer, H. B., Photodisintegration of a bound state on the torus (2012), arXiv:1202.6675
[352] Christ, N. H.; Martinelli, G.; Sachrajda, C. T., Finite-volume effects in the evaluation of the \(K_L - K_S\) mass difference, Proceedings, 31st International Symposium on Lattice Field Theory (Lattice 2013): Mainz, Germany, July 29-August 3, 2013. Proceedings, 31st International Symposium on Lattice Field Theory (Lattice 2013): Mainz, Germany, July 29-August 3, 2013, PoS, Lattice2013, 399 (2014), arXiv:1401.1362
[353] Christ, N. H.; Feng, X.; Portelli, A.; Sachrajda, C. T., Prospects for a lattice computation of rare kaon decay amplitudes. II. \( K \to \pi \nu \overline{\nu}\) decays, Phys. Rev. D, 93, 11, Article 114517 pp. (2016), arXiv:1605.04442
[354] Christ, N. H.; Feng, X.; Portelli, A.; Sachrajda, C. T., Lattice QCD study of the rare kaon decay \(K^+ \to \pi^+ \nu \overline{\nu}\) at a near-physical pion mass, Phys. Rev. D, 100, 11, Article 114506 pp. (2019), arXiv:1910.10644
[355] Barrett, B. R.; Navrátil, P.; Vary, J. P., Ab initio no core shell model, Prog. Part. Nucl. Phys., 69, 131-181 (2013)
[356] Hagen, G.; Papenbrock, T.; Hjorth-Jensen, M.; Dean, D. J., Coupled-cluster computations of atomic nuclei, Rep. Progr. Phys., 77, 9, 96302 (2014), arXiv:1312.7872
[357] Hagen, G., Neutron and weak-charge distributions of the \({}^{48}Ca\) nucleus, Nat. Phys., 12, 2, 186-190 (2015), arXiv:1509.07169
[358] Carbone, A.; Cipollone, A.; Barbieri, C.; Rios, A.; Polls, A., Self-consistent Green’s functions formalism with three-body interactions, Phys. Rev. C, 88, 5, 54326 (2013), arXiv:1310.3688
[359] Somà, V.; Cipollone, A.; Barbieri, C.; Navrátil, P.; Duguet, T., Chiral two- and three-nucleon forces along medium-mass isotope chains, Phys. Rev. C, 89, 6, 61301 (2014), arXiv:1312.2068
[360] Hergert, H.; Bogner, S. K.; Morris, T. D.; Schwenk, A.; Tsukiyama, K., The in-medium similarity renormalization group: A novel ab initio method for nuclei, Phys. Rep., 621, 165-222 (2016), arXiv:1512.06956
[361] Stroberg, S. R.; Bogner, S. K.; Hergert, H.; Holt, J. D., Non-empirical interactions for the nuclear shell model: An update (2019), arXiv:1902.06154
[362] Epelbaum, E.; Krebs, H.; Lee, D.; Meißner, U.-G., Ab initio calculation of the Hoyle state, Phys. Rev. Lett., 106, Article 192501 pp. (2011), arXiv:1101.2547
[363] Quaglioni, S., Light and unbound nuclei, Eur. Phys. J. Plus, 133, 9, 385 (2018)
[364] Savage, M. J.; Wise, M. B., Hyperon masses in nuclear matter, Phys. Rev. D, 53, 349-354 (1996), arXiv:hep-ph/9507288
[365] Beane, S.; Bedaque, P.; Parreño, A.; Savage, M., Exploring hyperons and hypernuclei with lattice QCD, Nuclear Phys. A, 747, 55-74 (2005), arXiv:nucl-th/0311027
[366] Kaplan, D. B.; Savage, M. J., The spin flavor dependence of nuclear forces from large n QCD, Phys. Lett. B, 365, 244-251 (1996), arXiv:hep-ph/9509371
[367] Kaplan, D. B.; Manohar, A. V., The Nucleon-nucleon potential in the 1/N(c) expansion, Phys. Rev. C, 56, 76-83 (1997), arXiv:nucl-th/9612021
[368] Lonardoni, D.; Lovato, A.; Gandolfi, S.; Pederiva, F., Hyperon puzzle: Hints from quantum Monte Carlo calculations, Phys. Rev. Lett., 114, 9, Article 092301 pp. (2015), arXiv:1407.4448
[369] Kirscher, J.; Barnea, N.; Gazit, D.; Pederiva, F.; van Kolck, U., Spectra and scattering of light lattice nuclei from effective field theory, Phys. Rev. C, 92, 5, 54002 (2015), arXiv:1506.09048
[370] Klos, P.; Lynn, J. E.; Tews, I.; Gandolfi, S.; Gezerlis, A.; Hammer, H.-W.; Hoferichter, M.; Schwenk, A., Quantum Monte Carlo calculations of two neutrons in finite volume, Phys. Rev. C, 94, 5, 54005 (2016), arXiv:1604.01387
[371] Gandolfi, S.; Carlson, J.; Roggero, A.; Lynn, J.; Reddy, S., Small bits of cold dense matter, Phys. Lett. B, 785, 232-237 (2018), arXiv:1712.10236
[372] Kirscher, J.; Pazy, E.; Drachman, J.; Barnea, N., Electromagnetic characteristics of \(A \leq 3\) physical and lattice nuclei, Phys. Rev. C, 96, 2, 24001 (2017), arXiv:1702.07268
[373] Ramos, A., Automatic differentiation for error analysis of Monte Carlo data, Comput. Phys. Comm., 238, 19-35 (2019), arXiv:1809.01289 · Zbl 07683953
[374] Wolff, U., Monte Carlo Errors with less errors, Comput. Phys. Comm.. Comput. Phys. Comm., Comput. Phys. Commun., 176, 383-153 (2007), (erratum) · Zbl 1196.65149
[375] Beane, S. R.; Detmold, W.; Luu, T. C.; Orginos, K.; Parreño, A.; Savage, M. J.; Torok, A.; Walker-Loud, A., High statistics analysis using anisotropic clover lattices: (I) single hadron correlation functions, Phys. Rev. D, 79, Article 114502 pp. (2009), arXiv:0903.2990
[376] Lepage, G., The analysis of algorithms for lattice field theory, (Invited lectures given at TASI’89 Summer School, Boulder, CO, Jun 4-30, Boulder ASI 1989:97-120 (1989))
[377] M.J. Savage, Private communications, 2010.
[378] Kaplan, D., Noise, statistics and sign problems, (Conceptual Advances in Lattice Gauge Theory (LGT14) (2014))
[379] Wagman, M. L.; Savage, M. J., Statistics of baryon correlation functions in lattice QCD, Phys. Rev. D, 96, 11, Article 114508 pp. (2017), arXiv:1611.07643
[380] Wagman, M. L., Life outside the golden window: Statistical angles on the signal-to-noise problem, EPJ Web Conf., 175, 05003 (2018), arXiv:1710.10818
[381] Hamber, H. W.; Marinari, E.; Parisi, G.; Rebbi, C., Considerations on numerical analysis of QCD, Nuclear Phys. B, 225, 475 (1983)
[382] Guagnelli, M.; Marinari, E.; Parisi, G., Scattering lengths from fluctuations, Phys. Lett. B, 240, 188-192 (1990)
[383] Endres, M. G.; Kaplan, D. B.; Lee, J.-W.; Nicholson, A. N., Noise, sign problems, and statistics, Phys. Rev. Lett., 107, Article 201601 pp. (2011), arXiv:1106.0073
[384] Endres, M. G.; Kaplan, D. B.; Lee, J.-W.; Nicholson, A. N., Lattice Monte Carlo calculations for unitary fermions in a harmonic trap, Phys. Rev. A, 84, Article 043644 pp. (2011), arXiv:1106.5725
[385] Endres, M. G.; Kaplan, D. B.; Lee, J.-W.; Nicholson, A. N., Lattice Monte Carlo calculations for unitary fermions in a finite box, Phys. Rev. A, 87, 2, Article 023615 pp. (2013), arXiv:1203.3169
[386] Drut, J. E.; Porter, W. J., Entanglement, noise, and the cumulant expansion, Phys. Rev. E, 93, 4, Article 043301 pp. (2016), arXiv:1508.04375
[387] Porter, W. J.; Drut, J.n. E., Tan’s contact and the phase distribution of repulsive Fermi gases: Insights from quantum chromodynamics noise analyses, Phys. Rev. A, 95, 5, Article 053619 pp. (2017), arXiv:1609.09401
[388] DeGrand, T., Log-normal distribution for correlators in lattice QCD?, Phys. Rev. D, 86, Article 014512 pp. (2012), arXiv:1204.4664
[389] Wagman, M. L., Statistical Angles on the Lattice QCD Signal-to-Noise Problem (2017), Washington U., Seattle, arXiv:1711.00062
[390] de Forcrand, P.; Liu, C.; Zhu, Y., Simulating QCD at finite density, PoS, LAT2009, 010 (2009), arXiv:1005.0539
[391] Zhang, S.; Carlson, J.; Gubernatis, J., Constrained path quantum Monte Carlo method for Fermion ground states, Phys. Rev. Lett., 74, 3652-3655 (1995), arXiv:cond-mat/9503055
[392] Wiringa, R. B.; Pieper, S. C.; Carlson, J.; Pandharipande, V., Quantum Monte Carlo calculations of A = 8 nuclei, Phys. Rev. C, 62, Article 014001 pp. (2000), arXiv:nucl-th/0002022
[393] Detmold, W.; Kanwar, G.; Wagman, M. L., Phase unwrapping and one-dimensional sign problems, Phys. Rev. D, 98, 7, Article 074511 pp. (2018), arXiv:1806.01832
[394] Ejiri, S., On the existence of the critical point in finite density lattice QCD, Phys. Rev. D, 77, Article 014508 pp. (2008), arXiv:0706.3549
[395] Detmold, W.; Kanwar, G.; Wagman, M. L.; Warrington, N. C., Path integral contour deformations for noisy observables (2020), arXiv:2003.05914
[396] Cristoforetti, M.; Di Renzo, F.; Scorzato, L., New approach to the sign problem in quantum field theories: High density QCD on a Lefschetz thimble, Phys. Rev. D, 86, Article 074506 pp. (2012), arXiv:1205.3996
[397] Alexandru, A.; Bedaque, P. F.; Lamm, H.; Lawrence, S.; Warrington, N. C., Fermions at finite density in 2+1 dimensions with sign-optimized manifolds, Phys. Rev. Lett., 121, 19, Article 191602 pp. (2018), arXiv:1808.09799
[398] Alexandru, A.; Bedaque, P. F.; Lamm, H.; Lawrence, S., Finite-density Monte Carlo calculations on sign-optimized manifolds, Phys. Rev. D, 97, 9, Article 094510 pp. (2018), arXiv:1804.00697
[399] Lüscher, M., Local coherence and deflation of the low quark modes in lattice QCD, J. High Energy Phys., 07, 081 (2007), arXiv:0706.2298
[400] Cè, M.; Giusti, L.; Schaefer, S., Domain decomposition, multi-level integration and exponential noise reduction in lattice QCD, Phys. Rev. D, 93, 9, Article 094507 pp. (2016), arXiv:1601.04587
[401] Lüscher, M.; Weisz, P., Locality and exponential error reduction in numerical lattice gauge theory, J. High Energy Phys., 09, 010 (2001), arXiv:hep-lat/0108014
[402] Meyer, H. B., Locality and statistical error reduction on correlation functions, J. High Energy Phys., 01, 048 (2003), arXiv:hep-lat/0209145 · Zbl 1226.81283
[403] Della Morte, M.; Giusti, L., Exploiting symmetries for exponential error reduction in path integral Monte Carlo, Comput. Phys. Comm., 180, 813-818 (2009) · Zbl 1198.81136
[404] Della Morte, M.; Giusti, L., Symmetries and exponential error reduction in Yang-Mills theories on the lattice, Comput. Phys. Comm., 180, 819-826 (2009), arXiv:0806.2601 · Zbl 1198.81146
[405] Cè, M.; Giusti, L.; Schaefer, S., A local factorization of the fermion determinant in lattice QCD, Phys. Rev. D, 95, 3, Article 034503 pp. (2017), arXiv:1609.02419
[406] Cè, M., Locality and multi-level sampling with fermions, Eur. Phys. J. Plus, 134, 6, 299 (2019)
[407] Detmold, W.; Endres, M. G., Signal/noise enhancement strategies for stochastically estimated correlation functions, Phys. Rev. D, 90, 3, 34503 (2014), arXiv:1404.6816
[408] Yoon, B.; Bhattacharya, T.; Gupta, R., Machine learning estimators for lattice QCD observables, Phys. Rev. D, 100, 1, Article 014504 pp. (2019), arXiv:1807.05971
[409] Zhang, R.; Fan, Z.; Li, R.; Lin, H.-W.; Yoon, B., Machine-learning prediction for quasiparton distribution function matrix elements, Phys. Rev. D, 101, 3, Article 034516 pp. (2020), arXiv:1909.10990
[410] Cossu, G.; Boyle, P.; Christ, N.; Jung, C.; Jüttner, A.; Sanfilippo, F.; Della Morte, M.; Fritzsch, P.; Gámiz Sánchez, E.; Pena Ruano, C., Testing algorithms for critical slowing down, EPJ Web Conf., 175, 02008 (2018), arXiv:1710.07036
[411] Christ, N. H.; Wickenden, E. W., Fourier acceleration, the HMC algorithm and renormalizability, PoS, LATTICE2018, 025 (2018), arXiv:1812.05281
[412] Boyda, D.; Kanwar, G.; Racanière, S.; Rezende, D. J.; Albergo, M. S.; Cranmer, K.; Hackett, D. C.; Shanahan, P. E., Sampling using \(S U ( N )\) gauge equivariant flows (2020), arXiv:2008.05456
[413] Kanwar, G.; Albergo, M. S.; Boyda, D.; Cranmer, K.; Hackett, D. C.; Racanière, S.; Rezende, D. J.; Shanahan, P. E., Equivariant flow-based sampling for lattice gauge theory (2020), arXiv:2003.06413
[414] Rezende, D. J.; Papamakarios, G.; Racanière, S.; Albergo, M. S.; Kanwar, G.; Shanahan, P. E.; Cranmer, K., Normalizing flows on tori and spheres (2020), arXiv:2002.02428
[415] Bluecher, S.; Kades, L.; Pawlowski, J. M.; Strodthoff, N.; Urban, J. M., Towards novel insights in lattice field theory with explainable machine learning (2020), arXiv:2003.01504
[416] Shanahan, P. E.; Trewartha, D.; Detmold, W., Machine learning action parameters in lattice quantum chromodynamics, Phys. Rev. D, 97, 9, 94506 (2018), arXiv:1801.05784
[417] Albergo, M. S.; Kanwar, G.; Shanahan, P. E., Flow-based generative models for Markov chain Monte Carlo in lattice field theory, Phys. Rev. D, 100, 3, 34515 (2019), arXiv:1904.12072
[418] Kades, L.; Pawlowski, J. M.; Rothkopf, A.; Scherzer, M.; Urban, J. M.; Wetzel, S. J.; Wink, N.; Ziegler, F., Spectral reconstruction with deep neural networks (2019), arXiv:1905.04305
[419] Urban, J. M.; Pawlowski, J. M., Reducing autocorrelation times in lattice simulations with generative adversarial networks (2018), arXiv:1811.03533
[420] Zhou, K.; Endrődi, G.; Pang, L.-G.; Stöcker, H., Regressive and generative neural networks for scalar field theory, Phys. Rev. D, 100, 1, 11501 (2019), arXiv:1810.12879
[421] Tanaka, A.; Tomiya, A., Towards reduction of autocorrelation in HMC by machine learning (2017), arXiv:1712.03893
[422] Jordan, S. P.; Lee, K. S.; Preskill, J., Quantum algorithms for quantum field theories, Science, 336, 1130-1133 (2012), arXiv:1111.3633
[423] Jordan, S. P.; Lee, K. S.; Preskill, J., Quantum computation of scattering in scalar quantum field theories, Quant. Inf. Comput., 14, 1014-1080 (2014), arXiv:1112.4833
[424] Jordan, S. P.; Lee, K. S.M.; Preskill, J., Quantum algorithms for Fermionic quantum field theories (2014), arXiv:1404.7115
[425] Martinez, E., Real-time dynamics of lattice gauge theories with a few-qubit quantum computer, Nature, 534, 516-519 (2016), arXiv:1605.04570
[426] Dumitrescu, E.; McCaskey, A.; Hagen, G.; Jansen, G.; Morris, T.; Papenbrock, T.; Pooser, R.; Dean, D.; Lougovski, P., Cloud quantum computing of an atomic nucleus, Phys. Rev. Lett., 120, 21, Article 210501 pp. (2018), arXiv:1801.03897
[427] Klco, N.; Dumitrescu, E. F.; McCaskey, A. J.; Morris, T. D.; Pooser, R. C.; Sanz, M.; Solano, E.; Lougovski, P.; Savage, M. J., Quantum-classical computation of schwinger model dynamics using quantum computers, Phys. Rev. A, 98, 3, 32331 (2018), arXiv:1803.03326
[428] Bhattacharyya, A.; Shekar, A.; Sinha, A., Circuit complexity in interacting QFTs and RG flows, J. High Energy Phys., 10, 140 (2018), arXiv:1808.03105 · Zbl 1402.81203
[429] Raychowdhury, I.; Stryker, J. R., Solving Gauss’s law on digital quantum computers with loop-string-hadron digitization, Phys. Rev. Res., 2, 3, Article 033039 pp. (2020), arXiv:1812.07554
[430] Klco, N.; Savage, M. J., Minimally-entangled state preparation of localized wavefunctions on quantum computers (2019), arXiv:1904.10440
[431] Bauer, C. W.; De Jong, W. A.; Nachman, B.; Provasoli, D., A quantum algorithm for high energy physics simulations (2019), arXiv:1904.03196
[432] Klco, N.; Stryker, J. R.; Savage, M. J., SU(2) non-Abelian gauge field theory in one dimension on digital quantum computers, Phys. Rev. D, 101, 7, Article 074512 pp. (2020), arXiv:1908.06935
[433] Davoudi, Z.; Hafezi, M.; Monroe, C.; Pagano, G.; Seif, A.; Shaw, A., Towards analog quantum simulations of lattice gauge theories with trapped ions, Phys. Rev. Res., 2, Article 023015 pp. (2020), arXiv:1908.03210
[434] Avkhadiev, A.; Shanahan, P.; Young, R., Accelerating lattice quantum field theory calculations via interpolator optimization using noisy intermediate-scale quantum computing, Phys. Rev. Lett., 124, 8, Article 080501 pp. (2020), arXiv:1908.04194
[435] Klco, N.; Savage, M. J., Systematically localizable operators for quantum simulations of quantum field theories, Phys. Rev. A, 102, 1, Article 012619 pp. (2020), arXiv:1912.03577
[436] Lamm, H.; Lawrence, S.; Yamauchi, Y., Parton physics on a quantum computer, Phys. Rev. Res., 2, 1, Article 013272 pp. (2020), arXiv:1908.10439
[437] Mueller, N.; Tarasov, A.; Venugopalan, R., Deeply inelastic scattering structure functions on a hybrid quantum computer, Phys. Rev. D, 102, 1, Article 016007 pp. (2020), arXiv:1908.07051
[438] Lamm, H.; Lawrence, S.; Yamauchi, Y., General methods for digital quantum simulation of gauge theories, Phys. Rev. D, 100, 3, Article 034518 pp. (2019), arXiv:1903.08807
[439] Kharzeev, D. E.; Kikuchi, Y., Real-time chiral dynamics from a digital quantum simulation (2020), arXiv:2001.00698
[440] Chakraborty, B.; Honda, M.; Izubuchi, T.; Kikuchi, Y.; Tomiya, A., Digital quantum simulation of the schwinger model with topological term via adiabatic state preparation (2020), arXiv:2001.00485
[441] Ciavarella, A., An algorithm for quantum computation of particle decays (2020), arXiv:2007.04447
[442] Briceño, R. A.; Guerrero, J. V.; Hansen, M. T.; Sturzu, A., The role of boundary conditions in quantum computations of scattering observables (2020), arXiv:2007.01155
[443] Liu, J.; Xin, Y., Quantum simulation of quantum field theories as quantum chemistry (2020), arXiv:2004.13234
[444] Kreshchuk, M.; Kirby, W. M.; Goldstein, G.; Beauchemin, H.; Love, P. J., Quantum simulation of quantum field theory in the light-front formulation (2020), arXiv:2002.04016
[445] Klco, N.; Savage, M. J., Fixed-point quantum circuits for quantum field theories (2020), arXiv:2002.02018
[446] Banuls, M., Simulating lattice gauge theories within quantum technologies (2019), arXiv:1911.00003
[447] Aoki, S.; Hatsuda, T.; Ishii, N., Nuclear force from Monte Carlo simulations of lattice quantum chromodynamics, Comput. Sci. Dis., 1, 15009 (2008), arXiv:0805.2462
[448] Iritani, T.; Della Morte, M.; Fritzsch, P.; Gámiz Sánchez, E.; Pena Ruano, C., Two-baryon systems from HAL QCD method and the mirage in the temporal correlation of the direct method, EPJ Web Conf., 175, 05008 (2018), arXiv:1710.06147
[449] Iritani, T.; Aoki, S.; Doi, T.; Hatsuda, T.; Ikeda, Y.; Inoue, T.; Ishii, N.; Nemura, H.; Sasaki, K., Are two nucleons bound in lattice QCD for heavy quark masses? Consistency check with Lüscher’s finite volume formula, Phys. Rev. D, 96, 3, 34521 (2017), arXiv:1703.07210
[450] Yamazaki, T.; Ishikawa, K.-i.; Kuramashi, Y., Comparison of different source calculations in two-nucleon channel at large quark mass, Proceedings, 35th International Symposium on Lattice Field Theory (Lattice 2017): Granada, Spain, June 18-24, 2017. Proceedings, 35th International Symposium on Lattice Field Theory (Lattice 2017): Granada, Spain, June 18-24, 2017, EPJ Web Conf., 175, 5019 (2018), arXiv:1710.08066
[451] Miyamoto, T.; Akahoshi, Y.; Aoki, S.; Aoyama, T.; Doi, T.; Gongyo, S.; Sasaki, K., Partial wave decomposition on the lattice and its applications to the HAL QCD method, Phys. Rev. D, 101, 7, Article 074514 pp. (2020), arXiv:1906.01987
[452] Yamazaki, T.; Kuramashi, Y., Reply to “Comment on ‘Relation between scattering amplitude and Bethe-Salpeter wave function in quantum field theory”’, Phys. Rev. D, 98, 3, 38502 (2018), arXiv:1808.06299
[453] Haidenbauer, J.; Meißner, U.-G., Phenomenological view on baryon-baryon potentials from lattice QCD simulations, Eur. Phys. J. A, 55, 5, 70 (2019), arXiv:1901.01801
[454] Aoki, S.; Doi, T.; Hatsuda, T.; Ishii, N., Comment on “Relation between scattering amplitude and Bethe-Salpeter wave function in quantum field theory”, Phys. Rev. D, 98, 3, Article 038501 pp. (2018), arXiv:1711.09344
[455] de Prony, G. R., J. Ecole Polytech., 1, 24 (1795)
[456] Fleming, G. T., What can lattice QCD theorists learn from NMR spectroscopists?, (3rd International Workshop on Numerical Analysis and Lattice QCD (2004)), 143-152, arXiv:hep-lat/0403023 · Zbl 1077.81529
[457] Fischer, M.; Kostrzewa, B.; Ostmeyer, J.; Ottnad, K.; Ueding, M.; Urbach, C., On the generalised eigenvalue method and its relation to Prony and generalised pencil of function methods (2020), arXiv:2004.10472
[458] Michael, C.; Teasdale, I., Extracting glueball masses from lattice QCD, Nuclear Phys. B, 215, 433-446 (1983)
[459] Michael, C., Adjoint sources in lattice gauge theory, Nuclear Phys. B, 259, 58-76 (1985)
[460] Lüscher, M.; Wolff, U., How to calculate the elastic scattering matrix in two-dimensional quantum field theories by numerical simulation, Nuclear Phys. B, 339, 222-252 (1990)
[461] Blossier, B.; Della Morte, M.; von Hippel, G.; Mendes, T.; Sommer, R., On the generalized eigenvalue method for energies and matrix elements in lattice field theory, J. High Energy Phys., 4, 94 (2009), arXiv:0902.1265
[462] Schiel, R. W., Expanding the interpolator basis in the variational method to explicitly account for backward running states, Phys. Rev. D, 92, 3, Article 034512 pp. (2015), arXiv:1503.02588
[463] Babich, R.; Brannick, J.; Brower, R. C.; Clark, M. A.; Manteuffel, T. A.; McCormick, S. F.; Osborn, J. C.; Rebbi, C., Adaptive multigrid algorithm for the lattice Wilson-Dirac operator, Phys. Rev. Lett., 105, Article 201602 pp. (2010), arXiv:1005.3043
[464] Osborn, J. C.; Babich, R.; Brannick, J.; Brower, R. C.; Clark, M. A.; Cohen, S. D.; Rebbi, C., Multigrid solver for clover fermions, Proceedings, 28th International Symposium on Lattice Field Theory (Lattice 2010): Villasimius, Italy, June 14-19, 2010. Proceedings, 28th International Symposium on Lattice Field Theory (Lattice 2010): Villasimius, Italy, June 14-19, 2010, PoS, LATTICE2010, 037 (2010), arXiv:1011.2775
[465] Boyle, P. A., Hierarchically deflated conjugate gradient (2014), arXiv:1402.2585
[466] Endres, M. G.; Brower, R. C.; Detmold, W.; Orginos, K.; Pochinsky, A. V., Multiscale Monte Carlo equilibration: Pure Yang-Mills theory, Phys. Rev. D, 92, 11, Article 114516 pp. (2015), arXiv:1510.04675
[467] Clark, M. A.; Joó, B.; Strelchenko, A.; Cheng, M.; Gambhir, A.; Brower, R., Accelerating lattice QCD multigrid on GPUs using fine-grained parallelization (2016), arXiv:1612.07873
[468] Yamaguchi, A.; Boyle, P., Hierarchically deflated conjugate residual, Proceedings, 34th International Symposium on Lattice Field Theory (Lattice 2016): Southampton, UK, July 24-30, 2016. Proceedings, 34th International Symposium on Lattice Field Theory (Lattice 2016): Southampton, UK, July 24-30, 2016, PoS, LATTICE2016, 374 (2016), arXiv:1611.06944
[469] Bacchio, S.; Alexandrou, C.; Finkerath, J., Multigrid accelerated simulations for Twisted Mass fermions, Proceedings, 35th International Symposium on Lattice Field Theory (Lattice 2017): Granada, Spain, June 18-24, 2017. Proceedings, 35th International Symposium on Lattice Field Theory (Lattice 2017): Granada, Spain, June 18-24, 2017, EPJ Web Conf., 175, 02002 (2018), arXiv:1710.06198
[470] Brower, R. C.; Clark, M. A.; Strelchenko, A.; Weinberg, E., Multigrid algorithm for staggered lattice fermions, Phys. Rev. D, 97, 11, Article 114513 pp. (2018), arXiv:1801.07823
[471] Richtmann, D.; Boyle, P. A.; Wettig, T., Multigrid for Wilson Clover Fermions in grid, Proceedings, 36th International Symposium on Lattice Field Theory (Lattice 2018): East Lansing, MI, United States, July 22-28, 2018. Proceedings, 36th International Symposium on Lattice Field Theory (Lattice 2018): East Lansing, MI, United States, July 22-28, 2018, PoS, LATTICE2018, 032 (2019), arXiv:1904.08678
[472] Detmold, W.; Murphy, D. J.; Pochinsky, A. V.; Savage, M. J.; Shanahan, P. E.; Wagman, M. L., Sparsening algorithm for multi-hadron lattice QCD correlation functions (2019), arXiv:1908.07050
[473] Kaplan, D. B., The OFT, (Domain Wall Fermions At 10 Years (2007))
[474] Vachaspati, P.; Detmold, W., Fast evaluation of multi-hadron correlation functions, Proceedings, 32nd International Symposium on Lattice Field Theory (Lattice 2014): Brookhaven, NY, USA, June 23-28, 2014. Proceedings, 32nd International Symposium on Lattice Field Theory (Lattice 2014): Brookhaven, NY, USA, June 23-28, 2014, PoS, Lattice2014, 41 (2014), arXiv:1411.3691
[475] Caurier, E.; Martinez-Pinedo, G.; Nowacki, F.; Poves, A.; Zuker, A., The shell model as unified view of nuclear structure, Rev. Modern Phys., 77, 427-488 (2005), arXiv:nucl-th/0402046
[476] Rubinstein, H.; Solomon, S.; Wittlich, T., Dependence of lattice hadron masses on external magnetic fields, Nuclear Phys. B, 457, 3, 577-593 (1995)
[477] Gadiyak, V.; Ji, X.-d.; Jung, C.-w., A lattice study of the magnetic moment and the spin structure of the nucleon, Phys. Rev. D, 65, Article 094510 pp. (2002), arXiv:hep-lat/0112040
[478] Leinweber, D. B.; Woloshyn, R. M.; Draper, T., Electromagnetic structure of octet baryons, Phys. Rev. D, 43, 1659-1678 (1991)
[479] Lee, F.; Kelly, R.; Zhou, L.; Wilcox, W., Baryon magnetic moments in the background field method, Phys. Lett. B, 627, 1, 71-76 (2005)
[480] Aubin, C.; Orginos, K.; Pascalutsa, V.; Vanderhaeghen, M., Lattice calculation of the magnetic moments of \(\Delta\) and \(\Omega^-\) baryons with dynamical clover fermions, Phys. Rev. D, 79, Article 051502 pp. (2009), https://link.aps.org/doi/10.1103/PhysRevD.79.051502
[481] Fiebig, H.; Wilcox, W.; Woloshyn, R., A study of hadron electric polarizability in quenched lattice QCD, Nuclear Phys. B, 324, 1, 47-66 (1989)
[482] Christensen, J.; Wilcox, W.; Lee, F. X.; Zhou, L., Electric polarizability of neutral hadrons from lattice QCD, Phys. Rev. D, 72, Article 034503 pp. (2005)
[483] Lee, F. X.; Zhou, L.; Wilcox, W.; Christensen, J., Magnetic polarizability of hadrons from lattice QCD in the background field method, Phys. Rev. D, 73, Article 034503 pp. (2006)
[484] Detmold, W.; Tiburzi, B. C.; Walker-Loud, A., Extracting electric polarizabilities from lattice QCD, Phys. Rev. D, 79, 94505 (2009), arXiv:0904.1586
[485] Detmold, W.; Tiburzi, B. C.; Walker-Loud, A., Extracting nucleon magnetic moments and electric polarizabilities from lattice QCD in background electric fields, Phys. Rev. D, 81, 54502 (2010), arXiv:1001.1131
[486] Primer, T.; Kamleh, W.; Leinweber, D.; Burkardt, M., Magnetic properties of the nucleon in a uniform background field, Phys. Rev. D, 89, 3, Article 034508 pp. (2014), arXiv:1307.1509
[487] Lujan, M.; Alexandru, A.; Freeman, W.; Lee, F., Electric polarizability of neutral hadrons from dynamical lattice QCD ensembles, Phys. Rev. D, 89, 7, 74506 (2014), arXiv:1402.3025
[488] Freeman, W.; Alexandru, A.; Lujan, M.; Lee, F. X., Sea quark contributions to the electric polarizability of hadrons, Phys. Rev. D, 90, 5, 54507 (2014), arXiv:1407.2687
[489] Parreño, A.; Savage, M. J.; Tiburzi, B. C.; Wilhelm, J.; Chang, E.; Detmold, W.; Orginos, K., Octet baryon magnetic moments from lattice QCD: Approaching experiment from a three-flavor symmetric point, Phys. Rev. D, 95, 11, Article 114513 pp. (2017), arXiv:1609.03985
[490] Parreño, A.; Savage, M. J.; Tiburzi, B. C.; Wilhelm, J.; Chang, E.; Detmold, W.; Orginos, K., Baryon magnetic moments: Symmetries and relations, Proceedings, 35th International Symposium on Lattice Field Theory (Lattice 2017): Granada, Spain, June 18-24, 2017. Proceedings, 35th International Symposium on Lattice Field Theory (Lattice 2017): Granada, Spain, June 18-24, 2017, EPJ Web Conf., 175, 6001 (2018), arXiv:1709.01564
[491] Bignell, R.; Hall, J.; Kamleh, W.; Leinweber, D.; Burkardt, M., Neutron magnetic polarizability with Landau mode operators, Phys. Rev. D, 98, Article 034504 pp. (2018)
[492] Bignell, R.; Kamleh, W.; Leinweber, D., Magnetic polarizability of the nucleon using a Laplacian mode projection, Phys. Rev. D, 101, Article 094502 pp. (2020)
[493] Engelhardt, M., Neutron electric polarizability from unquenched lattice QCD using the background field approach, Phys. Rev. D, 76, Article 114502 pp. (2007), arXiv:0706.3919
[494] Luschevskaya, E.; Solovjeva, O.; Teryaev, O., Magnetic polarizability of pion, Phys. Lett. B, 761, 393-398 (2016)
[495] Luschevskaya, E.; Teryaev, O.; Golubkov, D.; Solovjeva, O.; Ishkuvatov, R., Tensor polarizability of the vector mesons from \(S U ( 3 )\) lattice gauge theory, J. High Energy Phys., 11, 186 (2018), arXiv:1811.02344 · Zbl 1405.81171
[496] Abdel-Rehim, A.; Alexandrou, C.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Kallidonis, C.; Koutsou, G.; Avilés-Casco, A. V., Disconnected quark loop contributions to nucleon observables using \(N_f = 2\) twisted clover fermions at the physical value of the light quark mass, PoS, LATTICE2015, 136 (2016), arXiv:1511.00433
[497] Tiburzi, B. C.; Vayl, S. O., Method to extract charged hadron properties from lattice QCD in magnetic fields, Phys. Rev. D, 87, 54507 (2013)
[498] Deshmukh, A.; Tiburzi, B. C., Octet baryons in large magnetic fields, Phys. Rev. D, 97, Article 014006 pp. (2018)
[499] Duncan, R. C.; Thompson, C., Formation of very strongly magnetized neutron stars: Implications for gamma-ray bursts, Astrophys. J. Lett., 392, L9 (1992)
[500] Broderick, A.; Prakash, M.; Lattimer, J. M., The equation of state of neutron star matter in strong magnetic fields, Astrophys. J., 537, 1, 351-367 (2000)
[501] Kharzeev, D. E.; McLerran, L. D.; Warringa, H. J., The effects of topological charge change in heavy ion collisions: Event by event P and CP violation, Nuclear Phys. A, 803, 3, 227-253 (2008)
[502] McLerran, L.; Skokov, V., Comments about the electromagnetic field in heavy-ion collisions, Nuclear Phys. A, 929, 184-190 (2014)
[503] Cohen, T. D.; Werbos, E. S., Magnetization of the QCD vacuum at large fields, Phys. Rev. C, 80, Article 015203 pp. (2009), https://link.aps.org/doi/10.1103/PhysRevC.80.015203
[504] Chin, C.; Grimm, R.; Julienne, P.; Tiesinga, E., Feshbach Resonances in ultracold gases, Rev. Modern Phys., 82, 1225-1286 (2010)
[505] Allor, D.; Bedaque, P.; Cohen, T. D.; Sebens, C. T., A new class of quantum bound states: Diprotons in extreme magnetic fields, Phys. Rev. C, 75, Article 034001 pp. (2007), arXiv:nucl-th/0611092
[506] Kaplan, D. B., More effective field theory for nonrelativistic scattering, Nuclear Phys. B, 494, 471-484 (1997), arXiv:nucl-th/9610052
[507] Beane, S. R.; Savage, M. J., Rearranging pionless effective field theory, Nuclear Phys. A, 694, 511-524 (2001), arXiv:nucl-th/0011067 · Zbl 0972.81656
[508] Bethe, H. A.; Longmire, C., The effective range of nuclear forces II. Photo-disintegration of the deuteron, Phys. Rev., 77, 647-654 (1950) · Zbl 0041.33303
[509] Noyes, H. P., The interaction effect in n-p capture, Nuclear Phys., 74, 3, 508-532 (1965)
[510] Cox, A.; Wynchank, S.; Collie, C., The proton-thermal neutron capture cross section, Nuclear Phys., 74, 3, 497-507 (1965)
[511] Weller, H. R.; Ahmed, M. W.; Gao, H.; Tornow, W.; Wu, Y. K.; Gai, M.; Miskimen, R., Research opportunities at the upgraded \(\operatorname{HI} \gamma \operatorname{S}\) facility, Prog. Part. Nucl. Phys., 62, 1, 257-303 (2009)
[512] The MAX-IV project (2011), http://www.maxlab.lu.se/maxlab/max4/index.html
[513] Downie, E.; Fonvieille, H., Eur. Phys. J. Spec. Top., 198, 287 (2011)
[514] Myers, L. S.; Ahmed, M. W.; Feldman, G.; Henshaw, S. S.; Kovash, M. A.; Mueller, J. M.; Weller, H. R., Compton scattering from \({}^6\) li at 60 MeV, Phys. Rev. C, 86, 44614 (2012)
[515] Myers, L. S., Compton scattering from \({}^{12} \operatorname{C}\) using tagged photons in the energy range 65-115 MeV, Phys. Rev. C, 89, 35202 (2014)
[516] Myers, L. S.; Ahmed, M. W.; Feldman, G.; Kafkarkou, A.; Kendellen, D. P.; Mazumdar, I.; Mueller, J. M.; Sikora, M. H.; Weller, H. R.; Zimmerman, W. R., Compton scattering from \({}^6 \operatorname{Li}\) at 86 MeV, Phys. Rev. C, 90, 27603 (2014)
[517] Steigman, G., Primordial nucleosynthesis in the precision cosmology era, Ann. Rev. Nucl. Part. Sci., 57, 463-491 (2007), arXiv:0712.1100
[518] Pospelov, M.; Pradler, J., Big bang nucleosynthesis as a probe of new physics, Ann. Rev. Nucl. Part. Sci., 60, 539-568 (2010), arXiv:1011.1054
[519] Delaunay, C.; Ozeri, R.; Perez, G.; Soreq, Y., Probing atomic Higgs-like forces at the precision frontier, Phys. Rev. D, 96, 9, Article 093001 pp. (2017), arXiv:1601.05087
[520] Frugiuele, C.; Fuchs, E.; Perez, G.; Schlaffer, M., Constraining new physics models with isotope shift spectroscopy, Phys. Rev. D, 96, 1, Article 015011 pp. (2017), arXiv:1602.04822
[521] Berengut, J. C., Probing new long-range interactions by isotope shift spectroscopy, Phys. Rev. Lett., 120, Article 091801 pp. (2018), arXiv:1704.05068
[522] Stadnik, Y. V., Probing long-range neutrino-mediated forces with atomic and nuclear spectroscopy, Phys. Rev. Lett., 120, 22, Article 223202 pp. (2018), arXiv:1711.03700
[523] Delaunay, C.; Frugiuele, C.; Fuchs, E.; Soreq, Y., Probing new spin-independent interactions through precision spectroscopy in atoms with few electrons, Phys. Rev. D, 96, 11, Article 115002 pp. (2017), arXiv:1709.02817
[524] Pohl, R., Laser spectroscopy of muonic atoms and ions, Proceedings, 12th International Conference on Low Energy Antiproton Physics (LEAP2016): Kanazawa, Japan, March 6-11, 2016. Proceedings, 12th International Conference on Low Energy Antiproton Physics (LEAP2016): Kanazawa, Japan, March 6-11, 2016, JPS Conf. Proc., 18, 11021 (2017), arXiv:1609.03440
[525] Pohl, R., Laser spectroscopy of muonic deuterium, Science, 353, 6300, 669-673 (2016)
[526] Schmidt, S., The next generation of laser spectroscopy experiments using light muonic atoms (2018), arXiv e-prints arXiv:1808.07240
[527] Blaum, K.; Dilling, J.; Nortershauser, W., Precision atomic physics techniques for nuclear physics with radioactive beams, Phys. Scr. T, 152, Article 014017 pp. (2013), arXiv:1210.4045
[528] Nortershauser, W.; Neff, T.; Sanchez, R.; Sick, I., Charge radii and ground state structure of lithium isotopes: Experiment and theory reexamined, Phys. Rev. C, 84, Article 024307 pp. (2011)
[529] Sick, I., Zemach moments of \({}^3He\) and \({}^4He\), Phys. Rev. C, 90, 6, Article 064002 pp. (2014), arXiv:1412.2603
[530] Diepold, M.; Franke, B.; Krauth, J. J.; Antognini, A.; Kottmann, F.; Pohl, R., Theory of the lamb shift and fine structure in muonic \({}^4He\) ions and the muonic \({}^3 He-{}^4He\) isotope shift, Ann. Physics, 396, 220-244 (2018), arXiv:1606.05231
[531] Ji, C.; Bacca, S.; Barnea, N.; Hernandez, O. J.; Nevo-Dinur, N., \( A b i n i t i o\) Calculation of nuclear structure corrections in muonic atoms, J. Phys. G, 45, 9, Article 093002 pp. (2018), arXiv:1806.03101
[532] Navrátil, P.; Quaglioni, S.; Hupin, G.; Romero-Redondo, C.; Calci, A., Unified ab initio approaches to nuclear structure and reactions, Phys. Scr., 91, 5, Article 053002 pp. (2016), arXiv:1601.03765
[533] Gandolfi, S.; Lonardoni, D.; Lovato, A.; Piarulli, M., Atomic nuclei from quantum Monte Carlo calculations with chiral EFT interactions, Front. Phys., 8, 117 (2020), arXiv:2001.01374
[534] Berkowitz, E., An accurate calculation of the nucleon axial charge with lattice QCD (2017), arXiv:1704.01114
[535] Green, J., Systematics in nucleon matrix element calculations, PoS, LATTICE2018, 016 (2018), arXiv:1812.10574
[536] Mendenhall, M. P., Precision measurement of the neutron \(\beta \)-decay asymmetry, Phys. Rev. C, 87, 3, Article 032501 pp. (2013), arXiv:1210.7048
[537] Brown, M. A.P., New result for the neutron \(\beta \)-asymmetry parameter \(A_0\) from UCNA, Phys. Rev. C, 97, 3, Article 035505 pp. (2018), arXiv:1712.00884
[538] Mund, D.; Maerkisch, B.; Deissenroth, M.; Krempel, J.; Schumann, M.; Abele, H.; Petoukhov, A.; Soldner, T., Determination of the weak axial vector coupling from a measurement of the beta-asymmetry parameter A in neutron beta decay, Phys. Rev. Lett., 110, Article 172502 pp. (2013), arXiv:1204.0013
[539] Gonzalez-Alonso, M.; Naviliat-Cuncic, O.; Severijns, N., New physics searches in nuclear and neutron \(\beta\) decay, Prog. Part. Nucl. Phys., 104, 165-223 (2019), arXiv:1803.08732
[540] Kubodera, K.; Rho, M., Effective field theory and high-precision calculations of nuclear electroweak processes, (Lee, S., From Nuclei To Stars: Festschrift in Honor of Gerald E Brown (2011)), 223-251, arXiv:1011.4919
[541] Schiavilla, R., Weak capture of protons by protons, Phys. Rev. C, 58, 1263 (1998), arXiv:nucl-th/9808010
[542] Carlson, J.; Riska, D. O.; Schiavilla, R.; Wiringa, R. B., Weak proton capture reactions on 1H and 3He and tritium 2-beta decay, Phys. Rev. C, 44, 619-625 (1991)
[543] Butler, M.; Chen, J.-W., Proton proton fusion in effective field theory to fifth order, Phys. Lett. B, 520, 87-91 (2001), arXiv:nucl-th/0101017
[544] Park, T. S.; Marcucci, L. E.; Schiavilla, R.; Viviani, M.; Kievsky, A.; Rosati, S.; Kubodera, K.; Min, D. P.; Rho, M., Parameter free effective field theory calculation for the solar proton fusion and hep processes, Phys. Rev. C, 67, 55206 (2003), arXiv:nucl-th/0208055
[545] Butler, M.; Chen, J.-W.; Vogel, P., Constraints on two-body axial currents from reactor anti-neutrino deuteron breakup reactions, Phys. Lett. B, 549, 26-31 (2002), arXiv:nucl-th/0206026
[546] Ando, S.; Shin, J. W.; Hyun, C. H.; Hong, S. W.; Kubodera, K., Proton-proton fusion in pionless effective theory, Phys. Lett. B, 668, 187-192 (2008), arXiv:0801.4330
[547] Marcucci, L. E.; Schiavilla, R.; Viviani, M., Proton-proton weak capture in chiral effective field theory, Phys. Rev. Lett.. Phys. Rev. Lett., Phys. Rev. Lett., 123, 19, Article 019901 pp. (2019), (erratum)
[548] Chen, J.-W.; Liu, C. P.; Yu, S.-H., Near threshold proton-proton fusion in effective field theory, Phys. Lett. B, 720, 385-388 (2013), arXiv:1209.2552
[549] Acharya, B.; Carlsson, B. D.; Ekström, A.; Forssén, C.; Platter, L., Uncertainty quantification for proton-proton fusion in chiral effective field theory, Phys. Lett. B, 760, 584-589 (2016), arXiv:1603.01593
[550] De-Leon, H.; Platter, L.; Gazit, D., Tritium \(\beta \)-decay in pionless effective field theory, Phys. Rev. C, 100, 5, Article 055502 pp. (2019), arXiv:1611.10004
[551] Chen, J.-W.; Heeger, K. M.; Robertson, R. G.H., Constraining the leading weak axial two-body current by SNO and super-K, Phys. Rev. C, 67, 25801 (2003), arXiv:nucl-th/0210073
[552] Acharya, B.; Bacca, S., Neutrino-deuteron scattering: Uncertainty quantification and new \(L_{1 , A}\) constraints, Phys. Rev. C, 101, 1, 15505 (2020), arXiv:1911.12659
[553] Chen, J.-W.; Inoue, T.; Ji, X.-d.; Li, Y.-c., Fixing two-nucleon weak-axial coupling L(1,A) from mu- d capture, Phys. Rev. C, 72, 61001 (2005), arXiv:nucl-th/0506001
[554] Kammel, P.; Kubodera, K., Precision muon capture, Ann. Rev. Nucl. Part. Sci., 60, 327-353 (2010)
[555] Andreev, V. A., Muon capture on the deuteron – the musun experiment (2010), arXiv:1004.1754
[556] Ryan, R., Musun: A precision measurement of nuclear muon capture in deuterium with a cryogenic time projection chamber (2019), University of Washington, (Ph.D. thesis)
[557] Butler, M.; Chen, J.-W., Elastic and inelastic neutrino deuteron scattering in effective field theory, Nuclear Phys. A, 675, 575-600 (2000), arXiv:nucl-th/9905059
[558] Kong, X.; Ravndal, F., Proton proton fusion in effective field theory, Phys. Rev. C, 64, 44002 (2001), arXiv:nucl-th/0004038
[559] Phillips, D. R.; Rupak, G.; Savage, M. J., Improving the convergence of N N effective field theory, Phys. Lett. B, 473, 209-218 (2000), arXiv:nucl-th/9908054
[560] Aker, M., Improved upper limit on the neutrino mass from a direct kinematic method by KATRIN, Phys. Rev. Lett., 123, 22, Article 221802 pp. (2019), arXiv:1909.06048
[561] Drexlin, G.; Hannen, V.; Mertens, S.; Weinheimer, C., Current direct neutrino mass experiments, Adv. High Energy Phys., 2013, Article 293986 pp. (2013), arXiv:1307.0101
[562] Stephenson, G. J.; Goldman, J. T.; McKellar, B. H.J., Tritium beta decay, neutrino mass matrices and interactions beyond the standard model, Phys. Rev. D, 62, 93013 (2000), arXiv:hep-ph/0006095
[563] Bonn, J.; Eitel, K.; Gluck, F.; Sevilla-Sanchez, D.; Titov, N., The KATRIN sensitivity to the neutrino mass and to right-handed currents in beta decay, Phys. Lett. B, 703, 310-312 (2011), arXiv:0704.3930
[564] Ludl, P. O.; Rodejohann, W., Direct neutrino mass experiments and exotic charged current interactions, J. High Energy Phys., 6, 40 (2016), arXiv:1603.08690
[565] Arcadi, G.; Heeck, J.; Heizmann, F.; Mertens, S.; Queiroz, F. S.; Rodejohann, W.; Slezák, M.; Valerius, K., Tritium beta decay with additional emission of new light bosons, J. High Energy Phys., 1, 206 (2019), arXiv:1811.03530
[566] Mertens, S.; Lasserre, T.; Groh, S.; Drexlin, G.; Glueck, F.; Huber, A.; Poon, A. W.P.; Steidl, M.; Steinbrink, N.; Weinheimer, C., Sensitivity of next-generation tritium beta-decay experiments for keV-Scale sterile neutrinos, J. Cosmol. Astropart. Phys., 1502, 2, 20 (2015), arXiv:1409.0920
[567] Barry, J.; Heeck, J.; Rodejohann, W., Sterile neutrinos and right-handed currents in KATRIN, J. High Energy Phys., 7, 81 (2014), arXiv:1404.5955
[568] Klos, P.; Carbone, A.; Hebeler, K.; Menéndez, J.; Schwenk, A., Uncertainties in constraining low-energy constants from \({}^3 H \beta\) decay, Eur. Phys. J. A. Eur. Phys. J. A, Eur. Phys. J. A, 54, 8, 76 (2018), (erratum)
[569] Baroni, A.; Girlanda, L.; Kievsky, A.; Marcucci, L. E.; Schiavilla, R.; Viviani, M., Tritium \(\beta \)-decay in chiral effective field theory, Phys. Rev. C. Phys. Rev. C, Phys. Rev. C, 95, 2, 24003 (2017), (erratum)
[570] Baroni, A., Local chiral interactions, the tritium gamow-teller matrix element, and the three-nucleon contact term, Phys. Rev. C, 98, 4, 44003 (2018), arXiv:1806.10245
[571] Wildenthal, B. H.; Curtin, M. S.; Brown, B. A., Predicted features of the beta decay of neutron-rich sd-shell nuclei, Phys. Rev. C, 28, 1343-1366 (1983)
[572] Buck, B.; Perez, S.m., New look at magnetic moments and beta decays of mirror nuclei, Phys. Rev. Lett., 50, 1975-1978 (1983)
[573] Martí nez Pinedo, G.; Poves, A.; Caurier, E.; Zuker, A., Effective \(g_A\) in the pf shell, Phys. Rev. C, 53, 6, 2602 (1996), arXiv:nucl-th/9603039
[574] Towner, I., Quenching of spin matrix elements in nuclei, Phys. Rep., 155, 263-377 (1987)
[575] Ademollo, M.; Gatto, R., Nonrenormalization theorem for the strangeness violating vector currents, Phys. Rev. Lett., 13, 264-265 (1964)
[576] Stathopoulos, A.; Laeuchli, J.; Orginos, K., Hierarchical probing for estimating the trace of the matrix inverse on toroidal lattices, SIAM J. Sci. Comput., 35, 5, S299-S322 (2013) · Zbl 1281.65072
[577] Gambhir, A. S.; Stathopoulos, A.; Orginos, K., Deflation as a method of variance reduction for estimating the trace of a matrix inverse, SIAM J. Sci. Comput., 39, A532-A558 (2017), arXiv:1603.05988 · Zbl 1365.65111
[578] Arnison, G., Experimental observation of lepton pairs of invariant mass around 95-GeV/c**2 at the CERN SPS collider, Phys. Lett. B, 126, 398-410 (1983)
[579] Bagnaia, P., Evidence for \(Z^0 \to e^+ e^-\) at the CERN \(\overline{p} p\) collider, Phys. Lett. B, 129, 130-140 (1983)
[580] Walecka, J., Semileptonic weak and electromagnetic interactions in nuclei: Parity violations in electron scattering and weak neutral currents, Nuclear Phys. A, 285, 349-367 (1977)
[581] Haxton, W. C.; Holstein, B. R., Hadronic parity violation, Prog. Part. Nucl. Phys., 71, 185-203 (2013), arXiv:1303.4132
[582] Eversheim, P. D., Parity violation in proton proton scattering at 13.6-MeV, Phys. Lett. B, 256, 11-14 (1991)
[583] Blyth, D., First observation of \(P\)-odd \(\gamma\) asymmetry in polarized neutron capture on hydrogen, Phys. Rev. Lett., 121, 24, Article 242002 pp. (2018), arXiv:1807.10192
[584] Danilov, G., Circular polarization of \(\gamma\) quanta in absorption of neutrons by protons and isotopic structure of weak interactions, Phys. Lett., 18, 1, 40-41 (1965), http://www.sciencedirect.com/science/article/pii/0031916365900247
[585] Desplanques, B.; Missimer, J. H., An analysis of parity violating nuclear effects at low-energy, Nuclear Phys. A, 300, 286-312 (1978)
[586] Dai, J.; Savage, M. J.; Liu, J.; Springer, R. P., Low-energy effective hamiltonian for delta I = 1 nuclear parity violation and nucleonic strangeness, Phys. Lett. B, 271, 403-409 (1991)
[587] Kaplan, D. B.; Savage, M. J., An analysis of parity violating pion - nucleon couplings, Nuclear Phys. A. Nuclear Phys. A, Nucl. Phys. A. Nuclear Phys. A. Nuclear Phys. A, Nucl. Phys. A, Nucl. Phys. A, 580, 679-671 (1994), (erratum)
[588] Savage, M. J.; Springer, R. P., Parity violation in effective field theory and the deuteron anapole moment, Nuclear Phys. A. Nuclear Phys. A, Nucl. Phys. A, 657, 457-459 (1999), (erratum)
[589] Savage, M. J.; Springer, R. P., The anapole form-factor of the deuteron, Nuclear Phys. A, 686, 413-428 (2001), arXiv:nucl-th/9907069
[590] Phillips, D. R.; Schindler, M. R.; Springer, R. P., An effective-field-theory analysis of low-energy parity-violation in nucleon-nucleon scattering, Nuclear Phys. A, 822, 1-19 (2009), arXiv:0812.2073
[591] Tiburzi, B. C., Hadronic parity violation at next-to-leading order, Phys. Rev. D, 85, Article 054020 pp. (2012), arXiv:1201.4852
[592] de Vries, J.; Meißner, U.-G.; Epelbaum, E.; Kaiser, N., Parity violation in proton-proton scattering from chiral effective field theory, Eur. Phys. J. A, 49, 149 (2013), arXiv:1309.4711
[593] Viviani, M.; Baroni, A.; Girlanda, L.; Kievsky, A.; Marcucci, L. E.; Schiavilla, R., Chiral effective field theory analysis of hadronic parity violation in few-nucleon systems, Phys. Rev. C, 89, 6, Article 064004 pp. (2014), arXiv:1403.2267
[594] Phillips, D. R.; Samart, D.; Schat, C., Parity-violating nucleon-nucleon force in the \(1/ N_c\) expansion, Phys. Rev. Lett., 114, 6, Article 062301 pp. (2015), arXiv:1410.1157
[595] Schindler, M. R.; Springer, R. P.; Vanasse, J., Large-\( N_c\) limit reduces the number of independent few-body parity-violating low-energy constants in pionless effective field theory, Phys. Rev. C. Phys. Rev. C, Phys. Rev. C, 97, 2, Article 059901 pp. (2018), (erratum)
[596] Vanasse, J., Parity-violating three-nucleon interactions at low energies and large \(N_C\), Phys. Rev. C, 99, 5, Article 054001 pp. (2019), arXiv:1809.10740
[597] Guo, F.-K.; Seng, C.-Y., Effective field theory in the study of long range nuclear parity violation on lattice, Eur. Phys. J. C, 79, 1, 22 (2019), arXiv:1809.00639
[598] Desplanques, B.; Donoghue, J. F.; Holstein, B. R., Unified treatment of the parity violating nuclear force, Ann. Physics, 124, 2, 449-495 (1980)
[599] Wasem, J., Lattice QCD calculation of nuclear parity violation, Phys. Rev. C, 85, Article 022501 pp. (2012), arXiv:1108.1151
[600] Kurth, T.; Berkowitz, E.; Rinaldi, E.; Vranas, P.; Nicholson, A.; Strother, M.; Walker-Loud, A.; Rinaldi, E., Nuclear parity violation from lattice QCD, Proceedings, 33rd International Symposium on Lattice Field Theory (Lattice 2015): Kobe, Japan, July 14-18, 2015. Proceedings, 33rd International Symposium on Lattice Field Theory (Lattice 2015): Kobe, Japan, July 14-18, 2015, PoS, LATTICE2015, 329 (2016), arXiv:1511.02260
[601] Tiburzi, B. C., Isotensor hadronic parity violation, Phys. Rev. D, 86, Article 097501 pp. (2012), arXiv:1207.4996
[602] Tamura, H., Strangeness nuclear physics experiments at J-PARC, PTEP, 2012, 02B012 (2012)
[603] (Takahashi, T., Write-ups for workshop on the project for the hadron experimental facility of J-PARC, Partial collection of LOIs at the extended hadron hall and the related topics (2019)), arXiv:1906.02357
[604] Schaffner-Bielich, J., Hypernuclear physics for neutron stars, Nuclear Phys. A, 804, 309-321 (2008), arXiv:0801.3791
[605] Acciarri, R., Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE): Conceptual design report, volume 1: The LBNF and dune projects (2016)
[606] Abi, B., Deep underground neutrino experiment (DUNE), far detector technical design report, (Introduction to DUNE, Vol. I (2020)), arXiv:2002.02967
[607] Abe, K., Letter of intent: The hyper-kamiokande experiment — Detector design and physics potential — (2011), arXiv:1109.3262
[608] Yokoyama, M., The hyper-kamiokande experiment, (Prospects in Neutrino Physics (2017)), arXiv:1705.00306
[609] Schindler, M. R.; Springer, R. P., The theory of parity violation in few-nucleon systems, Prog. Part. Nucl. Phys., 72, 1-43 (2013), arXiv:1305.4190
[610] Haxton, W. C.; Wieman, C. E., Atomic parity nonconservation and nuclear anapole moments, Ann. Rev. Nucl. Part. Sci., 51, 261-293 (2001), arXiv:nucl-th/0104026
[611] Engel, J.; Menéndez, J., Status and future of nuclear matrix elements for neutrinoless double-beta decay: A review, Rep. Progr. Phys., 80, 4, 46301 (2017), arXiv:1610.06548
[612] Schechter, J.; Valle, J. W.F., Neutrinoless double beta decay in SU(2) x U(1) theories, Phys. Rev. D, 25, 2951 (1982), [289 (1981)]
[613] Gando, A., Limit on neutrinoless \(\beta \beta\) decay of \({}^{136}Xe\) from the first phase of kamland-zen and comparison with the positive claim in \({}^{76}Ge\), Phys. Rev. Lett., 110, 6, 62502 (2013), arXiv:1211.3863
[614] Agostini, M., Results on neutrinoless double-\( \beta\) decay of \({}^{76}Ge\) from phase I of the GERDA experiment, Phys. Rev. Lett., 111, 12, Article 122503 pp. (2013), arXiv:1307.4720
[615] Albert, J. B., Search for Majorana neutrinos with the first two years of EXO-200 data, Nature, 510, 229-234 (2014), arXiv:1402.6956
[616] Andringa, S., Current status and future prospects of the SNO+ experiment, Adv. High Energy Phys., 2016, Article 6194250 pp. (2016), arXiv:1508.05759
[617] Gando, A., Search for majorana neutrinos near the inverted mass hierarchy region with kamland-zen, Phys. Rev. Lett.. Phys. Rev. Lett., Phys. Rev. Lett., 117, 8, 82503 (2016), addendum
[618] Elliott, S. R., Initial results from the MAJORANA demonstrator (2016), arXiv:1610.01210
[619] Agostini, M., Background-free search for neutrinoless double-\( \beta\) decay of \({}^{76}Ge\) with GERDA, Nature. Nature, Nature, 544, 47 (2017), arXiv:1703.00570
[620] Aalseth, C. E., Search for neutrinoless double-? Decay in \({}^{76}Ge\) with the Majorana demonstrator, Phys. Rev. Lett., 120, 13, Article 132502 pp. (2018), arXiv:1710.11608
[621] Albert, J. B., Search for neutrinoless double-beta decay with the upgraded EXO-200 detector, Phys. Rev. Lett., 120, 7, 72701 (2018), arXiv:1707.08707
[622] Alduino, C., First results from CUORE: A search for lepton number violation via \(0 \nu \beta \beta\) decay of \({}^{130}Te\), Phys. Rev. Lett., 120, 13, Article 132501 pp. (2018), arXiv:1710.07988
[623] Agostini, M., Improved limit on neutrinoless double-\( \beta\) decay of \({}^{76}Ge\) from GERDA phase II, Phys. Rev. Lett., 120, 13, Article 132503 pp. (2018), arXiv:1803.11100
[624] Azzolini, O., First result on the neutrinoless double-\( \beta\) decay of \({}^{82} S e\) with CUPID-0, Phys. Rev. Lett., 120, 23, Article 232502 pp. (2018), arXiv:1802.07791
[625] Anton, G., Search for neutrinoless double-beta decay with the complete EXO-200 dataset (2019), arXiv:1906.02723
[626] Pontecorvo, B., Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys.—JETP. Sov. Phys.—JETP, Zh. Eksp. Teor. Fiz., 53, 1717-988 (1967)
[627] Maki, Z.; Nakagawa, M.; Sakata, S., Remarks on the unified model of elementary particles, Progr. Theoret. Phys., 28, 870-880 (1962), [34 (1962)] · Zbl 0125.22605
[628] Cirigliano, V.; Detmold, W.; Nicholson, A.; Shanahan, P., Lattice QCD inputs for nuclear double beta decay (2020), arXiv:2003.08493
[629] Kotila, J.; Iachello, F., Phase space factors for double-\( \beta\) decay, Phys. Rev. C, 85, 34316 (2012), arXiv:1209.5722
[630] Stoica, S.; Mirea, M., New calculations for phase space factors involved in double-\( \beta\) decay, Phys. Rev. C, 88, 3, 37303 (2013), arXiv:1307.0290
[631] Butler, M.; Chen, J.-W.; Kong, X., Neutrino deuteron scattering in effective field theory at next-to-next-to-leading order, Phys. Rev. C, 63, 35501 (2001), arXiv:nucl-th/0008032
[632] Weinberg, S., Baryon and lepton nonconserving processes, Phys. Rev. Lett., 43, 1566-1570 (1979)
[633] Wilczek, F.; Zee, A., Operator analysis of nucleon decay, Phys. Rev. Lett., 43, 1571-1573 (1979)
[634] Dolinski, M. J.; Poon, A. W.P.; Rodejohann, W., Neutrinoless double-beta decay: Status and prospects, Ann. Rev. Nucl. Part. Phys., 69 (2019), 219-251
[635] Prezeau, G.; Ramsey-Musolf, M.; Vogel, P., Neutrinoless double beta decay and effective field theory, Phys. Rev. D, 68, 34016 (2003), arXiv:hep-ph/0303205
[636] Cirigliano, V.; Dekens, W.; Mereghetti, E.; Walker-Loud, A., Neutrinoless double beta decay in effective field theory: the light majorana neutrino exchange mechanism (2017), arXiv:1710.01729
[637] Bai, Z.; Christ, N. H.; Izubuchi, T.; Sachrajda, C. T.; Soni, A.; Yu, J., \( K_L - K_S\) Mass difference from lattice QCD, Phys. Rev. Lett., 113, Article 112003 pp. (2014), arXiv:1406.0916
[638] Bai, Z.; Christ, N. H.; Feng, X.; Lawson, A.; Portelli, A.; Sachrajda, C. T., \( K^+ \to \pi^+ \nu \overline{\nu}\) Decay amplitude from lattice QCD, Phys. Rev. D, 98, 7, 74509 (2018), arXiv:1806.11520
[639] Ananthanarayan, B.; Moussallam, B., Four-point correlator constraints on electromagnetic chiral parameters and resonance effective Lagrangians, J. High Energy Phys., 6, 47 (2004), arXiv:hep-ph/0405206
[640] Y. Takahashi, The Fierz identities, in: Ezawa, H. and Kamefuchi, S. (Eds.), Progress in Quantum Field Theory, North-Holland, p. 121.
[641] Savage, M. J., Pionic matrix elements in neutrinoless double beta decay, Phys. Rev. C, 59, 2293-2296 (1999), arXiv:nucl-th/9811087
[642] Cirigliano, V.; Dekens, W.; De Vries, J.; Graesser, M. L.; Mereghetti, E.; Pastore, S.; Piarulli, M.; Van Kolck, U.; Wiringa, R. B., A renormalized approach to neutrinoless double-beta decay, Phys. Rev. C, 100, 5, 55504 (2019), arXiv:1907.11254
[643] Cirigliano, V.; Dekens, W.; Graesser, M.; Mereghetti, E., Neutrinoless double beta decay and chiral \(S U ( 3 )\), Phys. Lett. B, 769, 460-464 (2017), arXiv:1701.01443
[644] Sharpe, S. R.; Singleton, R. L., Spontaneous flavor and parity breaking with wilson fermions, Phys. Rev. D, 58, 74501 (1998), arXiv:hep-lat/9804028
[645] Berkowitz, E., Möbius domain-wall fermions on gradient-flowed dynamical HISQ ensembles, Phys. Rev. D, 96, 5, Article 054513 pp. (2017), arXiv:1701.07559
[646] Gasser, J.; Leutwyler, H., Spontaneously broken symmetries: Effective Lagrangians at finite volume, Nuclear Phys. B, 307, 763-778 (1988)
[647] Martinelli, G.; Pittori, C.; Sachrajda, C. T.; Testa, M.; Vladikas, A., A general method for nonperturbative renormalization of lattice operators, Nuclear Phys. B, 445, 81-108 (1995), arXiv:hep-lat/9411010
[648] Buchmuller, W.; Wyler, D., Effective Lagrangian analysis of new interactions and flavor conservation, Nuclear Phys. B, 268, 621-653 (1986)
[649] Alexander, J., Dark Sectors 2016 Workshop: Community Report (2016), arXiv:1608.08632
[650] Bishara, F.; Brod, J.; Grinstein, B.; Zupan, J., From quarks to nucleons in dark matter direct detection, J. High Energy Phys., 11, 59 (2017), arXiv:1707.06998 · Zbl 1383.81144
[651] Fitzpatrick, A. L.; Haxton, W.; Katz, E.; Lubbers, N.; Xu, Y., The effective field theory of dark matter direct detection, J. Cosmol. Astropart. Phys., 1302, 4 (2013), arXiv:1203.3542
[652] Cirigliano, V.; Graesser, M. L.; Ovanesyan, G., WIMP-Nucleus scattering in chiral effective theory, J. High Energy Phys., 10, 25 (2012), arXiv:1205.2695
[653] Menéndez, J.; Gazit, D.; Schwenk, A., Spin-dependent WIMP scattering off nuclei, Phys. Rev. D, 86, Article 103511 pp. (2012), arXiv:1208.1094
[654] Hoferichter, M.; Klos, P.; Schwenk, A., Chiral power counting of one- and two-body currents in direct detection of dark matter, Phys. Lett. B, 746, 410-416 (2015), arXiv:1503.04811 · Zbl 1343.81235
[655] Hoferichter, M.; Klos, P.; Menéndez, J.; Schwenk, A., Analysis strategies for general spin-independent WIMP-nucleus scattering, Phys. Rev. D, 94, 6, 63505 (2016), arXiv:1605.08043
[656] Körber, C.; Nogga, A.; de Vries, J., First-principle calculations of dark matter scattering off light nuclei, Phys. Rev. C, 96, 3, 35805 (2017), arXiv:1704.01150
[657] Andreoli, L.; Cirigliano, V.; Gandolfi, S.; Pederiva, F., Quantum Monte Carlo calculations of dark matter scattering off light nuclei, Phys. Rev. C, 99, 2, 25501 (2019), arXiv:1811.01843
[658] Krebs, H.; Epelbaum, E.; Meißner, U.-G., Subleading contributions to the nuclear scalar isoscalar currents (2020), arXiv:2005.07433
[659] Aprile, E., Dark matter search results from a one ton-year exposure of XENON1t, Phys. Rev. Lett., 121, 11, Article 111302 pp. (2018), arXiv:1805.12562
[660] Cui, X., Dark matter results from 54-ton-day exposure of pandaX-II experiment, Phys. Rev. Lett., 119, 18, Article 181302 pp. (2017), arXiv:1708.06917
[661] Lee, H. S., Search for low-mass dark matter with csi(tl) crystal detectors, Phys. Rev. D, 90, 5, 52006 (2014), arXiv:1404.3443
[662] Agnese, R., Low-mass dark matter search with cdmslite, Phys. Rev. D, 97, 2, 22002 (2018), arXiv:1707.01632
[663] Agnese, R., Results from the super cryogenic dark matter search experiment at soudan, Phys. Rev. Lett., 120, 6, 61802 (2018), arXiv:1708.08869
[664] Behnke, E., First dark matter search results from a 4-kg CF \({}_3I\) bubble chamber operated in a deep underground site, Phys. Rev. D. Phys. Rev. D, Phys. Rev. D, 90, 5, 52001 (2014), (erratum)
[665] Behnke, E., Final results of the PICASSO dark matter search experiment, Astropart. Phys., 90, 85-92 (2017), arXiv:1611.01499
[666] Amole, C., Dark matter search results from the PICO-60 CF \({}_3I\) bubble chamber, Phys. Rev. D, 93, 5, 52014 (2016), arXiv:1510.07754
[667] Amole, C., Dark matter search results from the PICO-\(60 C{}_3 F{}_8\) bubble chamber, Phys. Rev. Lett., 118, 25, Article 251301 pp. (2017), arXiv:1702.07666
[668] Angloher, G., Results on light dark matter particles with a low-threshold CRESST-II detector, Eur. Phys. J. C, 76, 1, 25 (2016), arXiv:1509.01515
[669] Angloher, G., Description of CRESST-II data (2017), arXiv:1701.08157
[670] Bernabei, R., First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C, 56, 333-355 (2008), arXiv:0804.2741
[671] Bernabei, R., New results from DAMA/LIBRA, Eur. Phys. J. C, 67, 39-49 (2010), arXiv:1002.1028
[672] Bernabei, R., First model independent results from DAMA/LIBRA-phase2, Proceedings, 7th International Conference on New Frontiers in Physics (ICNFP 2018): Kolymbari, Crete, Greece, July 4-12, 2018. Proceedings, 7th International Conference on New Frontiers in Physics (ICNFP 2018): Kolymbari, Crete, Greece, July 4-12, 2018, Universe. Proceedings, 7th International Conference on New Frontiers in Physics (ICNFP 2018): Kolymbari, Crete, Greece, July 4-12, 2018. Proceedings, 7th International Conference on New Frontiers in Physics (ICNFP 2018): Kolymbari, Crete, Greece, July 4-12, 2018, Universe, Nucl. Phys. Atom. Energy, 19, 11, 307 (2018), arXiv:1805.10486
[673] Bernabei, R., The DAMA/LIBRA apparatus, Nucl. Instrum. Methods A, 592, 297-315 (2008), arXiv:0804.2738
[674] Yang, L. T., Limits on light WIMPs with a 1 kg-scale germanium detector at 160 eVee physics threshold at the China jinping underground laboratory, Chin. J. Phys C, 42, 2, 23002 (2018), arXiv:1710.06650
[675] Agnes, P., Low-mass dark matter search with the darkside-50 experiment, Phys. Rev. Lett., 121, 8, 81307 (2018), arXiv:1802.06994
[676] Akerib, D. S., Projected WIMP sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment (2018), arXiv:1802.06039
[677] Angloher, G., The COSINUS project - perspectives of a nai scintillating calorimeter for dark matter search, Eur. Phys. J. C, 76, 8, 441 (2016), arXiv:1603.02214
[678] Bernabei, R., Searching for WIMPs by the annual modulation signature, Phys. Lett. B, 424, 195-201 (1998)
[679] Kozynets, T.; Fallows, S.; Krauss, C. B., Sensitivity of the PICO-500 bubble chamber to supernova neutrinos through coherent nuclear elastic scattering, Astropart. Phys., 105, 25-30 (2019), arXiv:1806.01417
[680] Hertel, S. A.; Biekert, A.; Lin, J.; Velan, V.; McKinsey, D. N., A path to the direct detection of sub-GeV dark matter using calorimetric readout of a superfluid \({}^4He\) target (2018), arXiv:1810.06283
[681] Hertel, S. A.; Biekert, A.; Lin, J.; Velan, V.; McKinsey, D. N., Direct detection of sub-gev dark matter using a superfluid \({}^4He\) target, Phys. Rev. D, 100, 9, 92007 (2019)
[682] Battaglieri, M., US Cosmic visions: New ideas in dark matter 2017: Community report, (U.S. Cosmic Visions: New Ideas in Dark Matter College Park, MD, USA, March 23-25, 2017 (2017)), arXiv:1707.04591
[683] Goodman, M. W.; Witten, E.; Srednicki, M., Detectability of certain dark matter candidates, Phys. Rev. D, 31, 3059 (1985)
[684] Jungman, G.; Kamionkowski, M.; Griest, K., Supersymmetric dark matter, Phys. Rep., 267, 195-373 (1996), arXiv:hep-ph/9506380
[685] Nussinov, S., Some estimates of interaction in matter of neutral technibaryons made of colored constituents, Phys. Lett. B, 279, 111-116 (1992)
[686] Chivukula, R. S.; Cohen, A. G.; Luke, M. E.; Savage, M. J., A comment on the strong interactions of color - neutral technibaryons, Phys. Lett. B, 298, 380-382 (1993), arXiv:hep-ph/9210274
[687] Bagnasco, J.; Dine, M.; Thomas, S. D., Detecting technibaryon dark matter, Phys. Lett. B, 320, 99-104 (1994), arXiv:hep-ph/9310290
[688] Hoferichter, M.; Ruiz de Elvira, J.; Kubis, B.; Meißner, U.-G., Matching pion-nucleon roy-steiner equations to chiral perturbation theory, Phys. Rev. Lett., 115, 19, Article 192301 pp. (2015), arXiv:1507.07552
[689] Ren, X.-L.; Geng, L.-S.; Meng, J., Scalar strangeness content of the nucleon and baryon sigma terms, Phys. Rev. D, 91, 5, 51502 (2015), arXiv:1404.4799
[690] Bali, G. S.; Collins, S.; Richtmann, D.; Schäfer, A.; Söldner, W.; Sternbeck, A., Direct determinations of the nucleon and pion \(\sigma\) terms at nearly physical quark masses, Phys. Rev. D, D93, 9, 94504 (2016), arXiv:1603.00827
[691] Abdel-Rehim, A.; Alexandrou, C.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Kallidonis, C.; Koutsou, G.; Vaquero Aviles-Casco, A., Direct evaluation of the quark content of nucleons from lattice QCD at the physical point, Phys. Rev. Lett., 116, 25, Article 252001 pp. (2016), arXiv:1601.01624
[692] Shanahan, P. E., Chiral effective theory methods and their application to the structure of hadrons from lattice QCD, J. Phys. G, 43, 12, Article 124001 pp. (2016), arXiv:1606.08812
[693] Borsanyi, S.; Fodor, Z.; Hoelbling, C.; Lellouch, L.; Szabo, K.; Torrero, C.; Varnhorst, L., Ab-initio calculation of the proton and the neutron’s scalar couplings for new physics searches (2020), arXiv:2007.03319
[694] Ruiz de Elvira, J.; Hoferichter, M.; Kubis, B.; Meißner, U.-G., Extracting the \(\sigma \)-term from low-energy pion-nucleon scattering, J. Phys. G, 45, 2, 24001 (2018), arXiv:1706.01465
[695] Prezeau, G.; Kurylov, A.; Kamionkowski, M.; Vogel, P., New contribution to wimp-nucleus scattering, Phys. Rev. Lett., 91, Article 231301 pp. (2003), arXiv:astro-ph/0309115
[696] Hoferichter, M.; Klos, P.; Menéndez, J.; Schwenk, A., Dark-matter-nucleus scattering in chiral effective field theory, (9th International Workshop on Chiral Dynamics (CD18) Durham, NC, USA, September 17-21, 2018 (2019)), arXiv:1903.11075
[697] Beane, S. R.; Cohen, S. D.; Detmold, W.; Lin, H. W.; Savage, M. J., Nuclear \(\sigma\) terms and scalar-isoscalar WIMP-nucleus interactions from lattice QCD, Phys. Rev. D, 89, 74505 (2014), arXiv:1306.6939
[698] Gell-Mann, M.; Oakes, R. J.; Renner, B., Behavior of current divergences under SU(3) x SU(3), Phys. Rev., 175, 2195-2199 (1968)
[699] Gasser, J.; Leutwyler, H., Chiral perturbation theory to one loop, Ann. Physics, 158, 142 (1984)
[700] Krofcheck, D., Gamow-teller strength function In Ge-71 Via The (P, N) reaction at medium-energies, Phys. Rev. Lett., 55, 1051-1054 (1985)
[701] Chou, W. T.; Warburton, E. K.; Brown, B. A., Gamow-teller beta-decay rates for A ¡= 18 nuclei, Phys. Rev. C, 47, 163-177 (1993)
[702] Brown, B. A.; Chung, W.; Wildenthal, B. H., Empirical renormalization of the one-body Gamow-Teller beta-decay matrix elements in the 1s-0d shell, Phys. Rev. Lett., 40, 1631-1635 (1978)
[703] Green, J.; Meinel, S.; Engelhardt, M.; Krieg, S.; Laeuchli, J.; Negele, J.; Orginos, K.; Pochinsky, A.; Syritsyn, S., High-precision calculation of the strange nucleon electromagnetic form factors, Phys. Rev. D, 92, 3, 31501 (2015), arXiv:1505.01803
[704] Bhattacharya, T.; Cirigliano, V.; Cohen, S.; Gupta, R.; Joseph, A.; Lin, H.-W.; Yoon, B., Iso-vector and iso-scalar tensor charges of the nucleon from lattice QCD, Phys. Rev. D, 92, 9, 94511 (2015), arXiv:1506.06411
[705] Alexandrou, C., Nucleon scalar and tensor charges using lattice QCD simulations at the physical value of the pion mass, Phys. Rev. D. Phys. Rev. D, Phys. Rev. D, 96, 11, Article 099906 pp. (2017), (erratum)
[706] Morrissey, D. E.; Ramsey-Musolf, M. J., Electroweak baryogenesis, New J. Phys., 14, Article 125003 pp. (2012), arXiv:1206.2942
[707] Chupp, T.; Fierlinger, P.; Ramsey-Musolf, M.; Singh, J., Electric dipole moments of atoms, molecules, nuclei, and particles, Rev. Modern Phys., 91, 1, 15001 (2019), arXiv:1710.02504
[708] Engel, J.; Ramsey-Musolf, M. J.; van Kolck, U., Electric dipole moments of nucleons, nuclei, and atoms: The standard model and beyond, Prog. Part. Nucl. Phys., 71, 21-74 (2013), arXiv:1303.2371
[709] Kim, J. E.; Carosi, G., Axions and the strong CP problem, Rev. Modern Phys.. Rev. Modern Phys., Rev. Mod. Phys., 91, 557-602 (2019), (erratum)
[710] Mereghetti, E.; van Kolck, U., Effective field theory and time-reversal violation in light nuclei, Ann. Rev. Nucl. Part. Sci., 65, 215-243 (2015), arXiv:1505.06272
[711] Bsaisou, J.; de Vries, J.; Hanhart, C.; Liebig, S.; Meißner, U.-G.; Minossi, D.; Nogga, A.; Wirzba, A., Nuclear electric dipole moments in chiral effective field theory, J. High Energy Phys.. J. High Energy Phys., J. High Energy Phys., 05, 083 (2015), (erratum)
[712] Guo, F.-K.; Meißner, U.-G., Baryon electric dipole moments from strong CP violation, J. High Energy Phys., 12, 97 (2012), arXiv:1210.5887
[713] Semertzidis, Y. K., A new method for a sensitive deuteron EDM experiment, Intersections of Particle and Nuclear Physics. Proceedings, 8th Conference, CIPANP 2003, New York, USA, May 19-24, 2003. Intersections of Particle and Nuclear Physics. Proceedings, 8th Conference, CIPANP 2003, New York, USA, May 19-24, 2003, AIP Conf. Proc., 698, 1, 200-204 (2004), arXiv:hep-ex/0308063
[714] Semertzidis, Y. K., A storage ring proton electric dipole moment experiment: most sensitive experiment to CP-violation beyond the standard model, (Particles and Fields. Proceedings, Meeting of the Division of the American Physical Society, DPF 2011, Providence, USA, August 9-13, 2011 (2011)), arXiv:1110.3378
[715] Pretz, J., Measurement of permanent electric dipole moments of charged hadrons in storage rings, Proceedings, 5th International Symposium on Symmetries in Subatomic Physics (SSP 2012): Groningen, the Netherlands, June 18-22, 2012. Proceedings, 5th International Symposium on Symmetries in Subatomic Physics (SSP 2012): Groningen, the Netherlands, June 18-22, 2012, Hyperfine Interact., 214, 1-3, 111-117 (2013), arXiv:1301.2937
[716] Flambaum, V.; Khriplovich, I.; Sushkov, O., On the P- and T-nonconserving nuclear moments, Nuclear Phys. A, 449, 4, 750-760 (1986), http://www.sciencedirect.com/science/article/pii/0375947486903313
[717] Yamanaka, N.; Sahoo, B. K.; Yoshinaga, N.; Sato, T.; Asahi, K.; Das, B. P., Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation, Eur. Phys. J. A, 53, 3, 54 (2017), arXiv:1703.01570
[718] Bsaisou, J.; Meiß ner, U.-G.; Nogga, A.; Wirzba, A., P- and T-violating Lagrangians in chiral effective field theory and nuclear electric dipole moments, Ann. Physics, 359, 317-370 (2015), arXiv:1412.5471 · Zbl 1343.81138
[719] Maekawa, C.; Mereghetti, E.; de Vries, J.; van Kolck, U., The time-reversal- and parity-violating nuclear potential in chiral effective theory, Nuclear Phys. A, 872, 117-160 (2011), arXiv:1106.6119
[720] Peccei, R.; Quinn, H. R., Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D, 16, 1791-1797 (1977)
[721] Wirzba, A.; Bsaisou, J.; Nogga, A., Permanent electric dipole moments of single-, two-, and three-nucleon systems, Internat. J. Modern Phys. E, 26, 01n02, Article 1740031 pp. (2017), arXiv:1610.00794
[722] Yamanaka, N., Review of the electric dipole moment of light nuclei, Internat. J. Modern Phys. E, 26, 4, Article 1730002 pp. (2017), arXiv:1609.04759
[723] Gupta, R.; Yoon, B.; Bhattacharya, T.; Cirigliano, V.; Jang, Y.-C.; Lin, H.-W., Flavor diagonal tensor charges of the nucleon from (2+1+1)-flavor lattice QCD, Phys. Rev. D, 98, 9, 91501 (2018), arXiv:1808.07597
[724] Babu, K., Working group report: Baryon number violation, (Community Summer Study 2013: Snowmass on the Mississippi (2013)), arXiv:1311.5285
[725] Fukugita, M.; Yanagida, T., Baryogenesis without grand unification, Phys. Lett. B, 174, 45-47 (1986)
[726] Hara, Y.; Itoh, S.; Iwasaki, Y.; Yoshie, T., Proton decay and lattice QCD, Phys. Rev. D, 34, 3399 (1986)
[727] Aoki, Y.; Izubuchi, T.; Shintani, E.; Soni, A., Improved lattice computation of proton decay matrix elements, Phys. Rev. D, 96, 1, Article 014506 pp. (2017), arXiv:1705.01338
[728] Yoo, J.-S.; Aoki, Y.; Izubuchi, T.; Syritsyn, S., Proton decay matrix element on lattice at physical pion mass, PoS, LATTICE2018, 187 (2019), arXiv:1812.09326
[729] Heeck, J.; Takhistov, V., Inclusive nucleon decay searches as a frontier of Baryon number violation, Phys. Rev. D, 101, 1, Article 015005 pp. (2020), arXiv:1910.07647
[730] Nishino, H., Search for proton decay via \(p \to e^+ \pi^0\) and \(p \to \mu^+ \pi^0\) in a large water cherenkov detector, Phys. Rev. Lett., 102, Article 141801 pp. (2009), arXiv:0903.0676
[731] Salcedo, L.; Oset, E.; Vicente-Vacas, M.; Garcia-Recio, C., Computer simulation of inclusive pion nuclear reactions, Nuclear Phys. A, 484, 557-592 (1988)
[732] Yamazaki, T.; Akaishi, Y., Nuclear medium effects on invariant mass spectra of hadrons decaying in nuclei, Phys. Lett. B, 453, 1-6 (2000)
[733] Mohapatra, R. N., Neutron-anti-neutron oscillation: Theory and phenomenology, J. Phys. G: Nucl. Part. Phys., 36, 10, Article 104006 pp. (2009), arXiv:0902.0834
[734] Babu, K., Neutron-antineutron oscillations: A snowmass 2013 white paper (2013), arXiv:1310.8593
[735] Phillips, D., Neutron-antineutron oscillations: Theoretical status and experimental prospects, Phys. Rep., 612, 1-45 (2016), arXiv:1410.1100
[736] Chang, L.; Chang, N., B-L nonconservation and neutron oscillation, Phys. Lett. B, 92, 103-106 (1980)
[737] Kuo, T.-K.; Love, S., Neutron oscillations and the existence of massive neutral leptons, Phys. Rev. Lett., 45, 93 (1980)
[738] Rao, S.; Shrock, R. E., Six-fermion \(( B - L )\)-violating operators of arbitrary generational structure, Nuclear Phys. B, 232, 1, 143-179 (1984)
[739] Rinaldi, E.; Syritsyn, S.; Wagman, M. L.; Buchoff, M. I.; Schroeder, C.; Wasem, J., Lattice QCD determination of neutron-antineutron matrix elements with physical quark masses, Phys. Rev. D, 99, 7, Article 074510 pp. (2019), arXiv:1901.07519
[740] Babu, K. S.; Mohapatra, R. N.; Nasri, S., Post-sphaleron baryogenesis, Phys. Rev. Lett., 97, Article 131301 pp. (2006), arXiv:hep-ph/0606144
[741] Babu, K. S.; Bhupal Dev, P. S.; Fortes, E. C.F. S.; Mohapatra, R. N., Post-sphaleron baryogenesis and an upper limit on the neutron-antineutron oscillation time, Phys. Rev. D, 87, 11, Article 115019 pp. (2013), arXiv:1303.6918
[742] Baldo-Ceolin, M., A new experimental limit on neutron-antineutron oscillations, Z. Phys. C, 63, 3, 409-416 (1994)
[743] Aharmim, B., The search for neutron-antineutron oscillations at the Sudbury Neutrino Observatory, Phys. Rev. D, 96, 9, 1-15 (2017), arXiv:1705.00696
[744] Dover, C.; Gal, A.; Richard, J., Limits on the neutron anti-neutron oscillation time from the stability of oplpuclei, Phys. Rev. C, 31, 1423-1429 (1985)
[745] Rinaldi, E.; Syritsyn, S.; Wagman, M. L.; Buchoff, M. I.; Schroeder, C.; Wasem, J., Neutron-antineutron oscillations from lattice QCD, Phys. Rev. Lett., 122, 16, Article 162001 pp. (2019), arXiv:1809.00246
[746] Oosterhof, F.; Long, B.; de Vries, J.; Timmermans, R.; van Kolck, U., Baryon-number violation by two units and the deuteron lifetime, Phys. Rev. Lett., 122, 17, Article 172501 pp. (2019), arXiv:1902.05342
[747] Haidenbauer, J.; Meiß ner, U.-G., Neutron-antineutron oscillations in the deuteron studied with \(N N\) and \(\overline{N N}\) interactions based on chiral effective field theory, Chin. Phys. C, 44, 3, Article 033101 pp. (2020), arXiv:1910.14423
[748] Barrow, J. L.; Golubeva, E. S.; Paryev, E.; Richard, J.-M., Progress and simulations for intranuclear neutron-antineutron transformations in \(_{18}^{40} A r\), Phys. Rev. D, 101, 3, Article 036008 pp. (2020), arXiv:1906.02833
[749] Abe, K., The search for \(n - \overline{n}\) oscillation in Super-Kamiokande I, Phys. Rev. D, 91, 72006 (2015), arXiv:1109.4227
[750] Bartoszek, L., Mu2e Technical design report (2014), arXiv:1501.05241
[751] Cheng, T.; Li, L.-F., \( \mu \to e \gamma In\) theories with Dirac and Majorana neutrino mass terms, Phys. Rev. Lett., 45, 1908 (1980)
[752] Kuno, Y.; Okada, Y., Muon decay and physics beyond the standard model, Rev. Modern Phys., 73, 151-202 (2001), arXiv:hep-ph/9909265
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.