×

Circuit complexity in interacting QFTs and RG flows. (English) Zbl 1402.81203

Summary: We consider circuit complexity in certain interacting scalar quantum field theories, mainly focusing on the \(\phi^4\) theory. We work out the circuit complexity for evolving from a nearly Gaussian unentangled reference state to the entangled ground state of the theory. Our approach uses Nielsen’s geometric method, which translates into working out the geodesic equation arising from a certain cost functional. We present a general method, making use of integral transforms, to do the required lattice sums analytically and give explicit expressions for the \(d = 2,3\) cases. Our method enables a study of circuit complexity in the epsilon expansion for the Wilson-Fisher fixed point. We find that with increasing dimensionality the circuit depth increases in the presence of the \(\phi^4\) interaction eventually causing the perturbative calculation to breakdown. We discuss how circuit complexity relates with the renormalization group.

MSC:

81T25 Quantum field theory on lattices
81T17 Renormalization group methods applied to problems in quantum field theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

References:

[1] Bennett, CH, Logical reversibility of computation, IBM J. Res. Develop., 17, 525, (1973) · Zbl 0267.68024 · doi:10.1147/rd.176.0525
[2] A. Berthiaume and G. Brassard, The quantum challenge to structural complexity theory, in Proceedings of the Seventh Annual Structure in Complexity Theory Conference, IEEE Comput. Soc. Press, (1992).
[3] E. Bernstein and U. Vazirani, Quantum complexity theory, in Proceedings of the twenty-fifth annual ACM Symposium on Theory Of Computing — STOC ’93, ACM press, (1993). · Zbl 1310.68080
[4] S. Lloyd, Ultimate physical limits to computation, Nature406 (2000) 1047 [quant-ph/9908043].
[5] S. Arora and B. Barak, Computational complexity: a modern approach, Cambridge University Press, Cambridge, U.K., (2009). · Zbl 1193.68112
[6] C. Moore and S. Mertens, The nature of computation, Oxford University Press, Oxford, U.K., (2011). · Zbl 1237.68004
[7] S. Aaronson, The complexity of quantum states and transformations: from quantum money to black holes, arXiv:1607.05256 [INSPIRE].
[8] J. Watrous, Quantum computational complexity, in Encyclopedia of complexity and systems science, Springer, New York, U.S.A., (2013), pg. 7174.
[9] T.J. Osborne, Hamiltonian complexity, Rept. Progr. Phys.75 (2012) 022001.
[10] Gharibian, S.; Huang, Y.; Landau, Z.; Shin, SW, Quantum Hamiltonian complexity, Found. Trends Theor. Comput. Sci., 10, 159, (2015) · Zbl 1329.68117 · doi:10.1561/0400000066
[11] Jordan, SP; Lee, KSM; Preskill, J., Quantum algorithms for quantum field theories, Science, 336, 1130, (2012) · doi:10.1126/science.1217069
[12] S.P. Jordan, K.S.M. Lee and J. Preskill, Quantum computation of scattering in scalar quantum field theories, arXiv:1112.4833 [INSPIRE].
[13] S.P. Jordan, H. Krovi, K.S.M. Lee and J. Preskill, BQP-completeness of scattering in scalar quantum field theory, arXiv:1703.00454 [INSPIRE].
[14] Jefferson, R.; Myers, RC, Circuit complexity in quantum field theory, JHEP, 10, 107, (2017) · Zbl 1383.81233 · doi:10.1007/JHEP10(2017)107
[15] K. Hashimoto, N. Iizuka and S. Sugishita, Time evolution of complexity in Abelian gauge theories, Phys. Rev.D 96 (2017) 126001 [arXiv:1707.03840] [INSPIRE].
[16] R.-Q. Yang, Complexity for quantum field theory states and applications to thermofield double states, Phys. Rev.D 97 (2018) 066004 [arXiv:1709.00921] [INSPIRE].
[17] R. Khan, C. Krishnan and S. Sharma, Circuit complexity in fermionic field theory, arXiv:1801.07620 [INSPIRE].
[18] R.-Q. Yang, Y.-S. An, C. Niu, C.-Y. Zhang and K.-Y. Kim, Principles and symmetries of complexity in quantum field theory, arXiv:1803.01797 [INSPIRE].
[19] Hackl, L.; Myers, RC, Circuit complexity for free fermions, JHEP, 07, 139, (2018) · Zbl 1395.81225 · doi:10.1007/JHEP07(2018)139
[20] Alves, DWF; Camilo, G., Evolution of complexity following a quantum quench in free field theory, JHEP, 06, 029, (2018) · Zbl 1395.81149 · doi:10.1007/JHEP06(2018)029
[21] Magán, JM, Black holes, complexity and quantum chaos, JHEP, 09, 043, (2018) · Zbl 1398.83052 · doi:10.1007/JHEP09(2018)043
[22] P. Caputa and J.M. Magan, Quantum computation as gravity, arXiv:1807.04422 [INSPIRE].
[23] H.A. Camargo, P. Caputa, D. Das, M.P. Heller and R. Jefferson, Complexity as a novel probe of quantum quenches: universal scalings and purifications, arXiv:1807.07075 [INSPIRE].
[24] Guo, M.; Hernandez, J.; Myers, RC; Ruan, S-M, Circuit complexity for coherent states, JHEP, 10, 011, (2018) · Zbl 1402.81222 · doi:10.1007/JHEP10(2018)011
[25] T. Ali, A. Bhattacharyya, S.S. Haque, E.H. Kim and N. Moynihan, Time evolution of complexity: a critique of three methods, arXiv:1810.02734 [INSPIRE].
[26] T. Ali, A. Bhattacharyya, S.S. Haque, E.H. Kim and N. Moynihan, Post-quench evolution of distance and uncertainty in a topological system: complexity, entanglement, and revivals, to appear soon.
[27] L. Susskind, Computational complexity and black hole horizons, Fortsch. Phys.64 (2016) 24 [Addendum ibid.64 (2016) 44] [arXiv:1403.5695] [INSPIRE]. · Zbl 1429.81019
[28] L. Susskind and Y. Zhao, Switchbacks and the bridge to nowhere, arXiv:1408.2823 [INSPIRE].
[29] Susskind, L., Entanglement is not enough, Fortsch. Phys., 64, 49, (2016) · Zbl 1429.81021 · doi:10.1002/prop.201500095
[30] D. Stanford and L. Susskind, Complexity and shock wave geometries, Phys. Rev.D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].
[31] Brown, AR; Roberts, DA; Susskind, L.; Swingle, B.; Zhao, Y., Holographic complexity equals bulk action?, Phys. Rev. Lett., 116, 191301, (2016) · doi:10.1103/PhysRevLett.116.191301
[32] A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and black holes, Phys. Rev.D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].
[33] Barbon, JLF; Rabinovici, E., Holographic complexity and spacetime singularities, JHEP, 01, 084, (2016) · Zbl 1388.83543 · doi:10.1007/JHEP01(2016)084
[34] M. Alishahiha, Holographic complexity, Phys. Rev.D 92 (2015) 126009 [arXiv:1509.06614] [INSPIRE].
[35] Cai, R-G; Ruan, S-M; Wang, S-J; Yang, R-Q; Peng, R-H, Action growth for AdS black holes, JHEP, 09, 161, (2016) · Zbl 1390.83180 · doi:10.1007/JHEP09(2016)161
[36] A.R. Brown, L. Susskind and Y. Zhao, Quantum complexity and negative curvature, Phys. Rev.D 95 (2017) 045010 [arXiv:1608.02612] [INSPIRE].
[37] L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin, Gravitational action with null boundaries, Phys. Rev.D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].
[38] R.-Q. Yang, Strong energy condition and complexity growth bound in holography, Phys. Rev.D 95 (2017) 086017 [arXiv:1610.05090] [INSPIRE].
[39] Chapman, S.; Marrochio, H.; Myers, RC, Complexity of formation in holography, JHEP, 01, 062, (2017) · Zbl 1373.83052 · doi:10.1007/JHEP01(2017)062
[40] Carmi, D.; Myers, RC; Rath, P., Comments on holographic complexity, JHEP, 03, 118, (2017) · Zbl 1377.81160 · doi:10.1007/JHEP03(2017)118
[41] Reynolds, A.; Ross, SF, Divergences in holographic complexity, Class. Quant. Grav., 34, 105004, (2017) · Zbl 1369.83030 · doi:10.1088/1361-6382/aa6925
[42] A.R. Brown and L. Susskind, Second law of quantum complexity, Phys. Rev.D 97 (2018) 086015 [arXiv:1701.01107] [INSPIRE].
[43] Y. Zhao, Complexity and boost symmetry, Phys. Rev.D 98 (2018) 086011 [arXiv:1702.03957] [INSPIRE].
[44] M. Flory, A complexity/fidelity susceptibility g-theorem for AdS_{3}/BCFT_{2}, JHEP06 (2017) 131 [arXiv:1702.06386] [INSPIRE].
[45] M. Alishahiha and A. Faraji Astaneh, Holographic fidelity susceptibility, Phys. Rev.D 96 (2017) 086004 [arXiv:1705.01834] [INSPIRE].
[46] Reynolds, A.; Ross, SF, Complexity in de Sitter space, Class. Quant. Grav., 34, 175013, (2017) · Zbl 1372.83026 · doi:10.1088/1361-6382/aa8122
[47] Carmi, D.; Chapman, S.; Marrochio, H.; Myers, RC; Sugishita, S., On the time dependence of holographic complexity, JHEP, 11, 188, (2017) · Zbl 1383.81191 · doi:10.1007/JHEP11(2017)188
[48] Couch, J.; Eccles, S.; Fischler, W.; Xiao, M-L, Holographic complexity and noncommutative gauge theory, JHEP, 03, 108, (2018) · Zbl 1388.81647 · doi:10.1007/JHEP03(2018)108
[49] Yang, R-Q; Niu, C.; Zhang, C-Y; Kim, K-Y, Comparison of holographic and field theoretic complexities for time dependent thermofield double states, JHEP, 02, 082, (2018) · Zbl 1387.81279 · doi:10.1007/JHEP02(2018)082
[50] R. Abt et al., Topological complexity in AdS_{3}/CFT_{2}, Fortsch. Phys.66 (2018) 1800034 [arXiv:1710.01327] [INSPIRE].
[51] Moosa, M., Evolution of complexity following a global quench, JHEP, 03, 031, (2018) · Zbl 1388.81685 · doi:10.1007/JHEP03(2018)031
[52] M. Moosa, Divergences in the rate of complexification, Phys. Rev.D 97 (2018) 106016 [arXiv:1712.07137] [INSPIRE].
[53] Swingle, B.; Wang, Y., Holographic complexity of Einstein-Maxwell-dilaton gravity, JHEP, 09, 106, (2018) · Zbl 1398.83021 · doi:10.1007/JHEP09(2018)106
[54] A.P. Reynolds and S.F. Ross, Complexity of the AdS soliton, Class. Quant. Grav.35 (2018) 095006 [arXiv:1712.03732] [INSPIRE]. · Zbl 1391.83046
[55] Fu, Z.; Maloney, A.; Marolf, D.; Maxfield, H.; Wang, Z., Holographic complexity is nonlocal, JHEP, 02, 072, (2018) · Zbl 1387.81314 · doi:10.1007/JHEP02(2018)072
[56] Y.-S. An and R.-H. Peng, Effect of the dilaton on holographic complexity growth, Phys. Rev.D 97 (2018) 066022 [arXiv:1801.03638] [INSPIRE].
[57] Bolognesi, S.; Rabinovici, E.; Roy, SR, On some universal features of the holographic quantum complexity of bulk singularities, JHEP, 06, 016, (2018) · Zbl 1395.83075 · doi:10.1007/JHEP06(2018)016
[58] Chen, B.; Li, W-M; Yang, R-Q; Zhang, C-Y; Zhang, S-J, Holographic subregion complexity under a thermal quench, JHEP, 07, 034, (2018) · Zbl 1395.81207 · doi:10.1007/JHEP07(2018)034
[59] S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes. Part I, JHEP06 (2018) 046 [arXiv:1804.07410] [INSPIRE]. · Zbl 1395.81206
[60] R. Abt, J. Erdmenger, M. Gerbershagen, C.M. Melby-Thompson and C. Northe, Holographic subregion complexity from kinematic space, arXiv:1805.10298 [INSPIRE].
[61] K. Hashimoto, N. Iizuka and S. Sugishita, Thoughts on holographic complexity and its basis-dependence, Phys. Rev.D 98 (2018) 046002 [arXiv:1805.04226] [INSPIRE].
[62] S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes. Part II, JHEP06 (2018) 114 [arXiv:1805.07262] [INSPIRE]. · Zbl 1395.81206
[63] M. Flory and N. Miekley, Complexity change under conformal transformations in AdS_{3}/CFT_{2}, arXiv:1806.08376 [INSPIRE].
[64] J. Couch, S. Eccles, T. Jacobson and P. Nguyen, Holographic complexity and volume, arXiv:1807.02186 [INSPIRE].
[65] S.A. Hosseini Mansoori, V. Jahnke, M.M. Qaemmaqami and Y.D. Olivas, Holographic complexity of anisotropic black branes, arXiv:1808.00067 [INSPIRE].
[66] M.A. Nielsen, A geometric approach to quantum circuit lower bounds, quant-ph/0502070.
[67] M.A. Nielsen, M.R. Dowling, M. Gu and A.M. Doherty, Quantum computation as geometry, Science311 (2006) 1133 [quant-ph/0603161]. · Zbl 1226.81049
[68] M.A. Nielsen and M.R. Dowling, The geometry of quantum computation, quant-ph/0701004.
[69] B. Swingle, Entanglement renormalization and holography, Phys. Rev.D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].
[70] Haegeman, J.; Osborne, TJ; Verschelde, H.; Verstraete, F., Entanglement renormalization for quantum fields in real space, Phys. Rev. Lett., 110, 100402, (2013) · doi:10.1103/PhysRevLett.110.100402
[71] Nozaki, M.; Ryu, S.; Takayanagi, T., Holographic geometry of entanglement renormalization in quantum field theories, JHEP, 10, 193, (2012) · Zbl 1397.81046 · doi:10.1007/JHEP10(2012)193
[72] Mollabashi, A.; Nozaki, M.; Ryu, S.; Takayanagi, T., Holographic geometry of cMERA for quantum quenches and finite temperature, JHEP, 03, 098, (2014) · doi:10.1007/JHEP03(2014)098
[73] Molina-Vilaplana, J., Information geometry of entanglement renormalization for free quantum fields, JHEP, 09, 002, (2015) · Zbl 1388.81064 · doi:10.1007/JHEP09(2015)002
[74] Chapman, S.; Heller, MP; Marrochio, H.; Pastawski, F., Toward a definition of complexity for quantum field theory states, Phys. Rev. Lett., 120, 121602, (2018) · doi:10.1103/PhysRevLett.120.121602
[75] P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Anti-de Sitter space from optimization of path integrals in conformal field theories, Phys. Rev. Lett.119 (2017) 071602 [arXiv:1703.00456] [INSPIRE]. · Zbl 1383.81189
[76] Caputa, P.; Kundu, N.; Miyaji, M.; Takayanagi, T.; Watanabe, K., Liouville action as path-integral complexity: from continuous tensor networks to AdS/CFT, JHEP, 11, 097, (2017) · Zbl 1383.81189 · doi:10.1007/JHEP11(2017)097
[77] B. Czech, Einstein equations from varying complexity, Phys. Rev. Lett.120 (2018) 031601 [arXiv:1706.00965] [INSPIRE].
[78] Molina-Vilaplana, J.; Campo, A., Complexity functionals and complexity growth limits in continuous MERA circuits, JHEP, 08, 012, (2018) · Zbl 1396.83029 · doi:10.1007/JHEP08(2018)012
[79] Bhattacharyya, A.; Caputa, P.; Das, SR; Kundu, N.; Miyaji, M.; Takayanagi, T., Path-integral complexity for perturbed CFTs, JHEP, 07, 086, (2018) · Zbl 1395.81204 · doi:10.1007/JHEP07(2018)086
[80] Myers, RC; Sinha, A., Holographic c-theorems in arbitrary dimensions, JHEP, 01, 125, (2011) · Zbl 1214.83036 · doi:10.1007/JHEP01(2011)125
[81] R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev.D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].
[82] Komargodski, Z.; Schwimmer, A., On renormalization group flows in four dimensions, JHEP, 12, 099, (2011) · Zbl 1306.81140 · doi:10.1007/JHEP12(2011)099
[83] H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev.D 85 (2012) 125016 [arXiv:1202.5650] [INSPIRE]. · Zbl 1397.81034
[84] D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-theorem: N = 2 field theories on the three-sphere, JHEP06 (2011) 102 [arXiv:1103.1181] [INSPIRE]. · Zbl 1298.81304
[85] J.S. Cotler, J. Molina-Vilaplana and M.T. Mueller, A Gaussian variational approach to cMERA for interacting fields, arXiv:1612.02427 [INSPIRE].
[86] S. Ghosh and B. Sanders, Non-Gaussian ancilla states for continuous variable quantum computation via Gaussian maps, J. Mod. Opt.54 (2007) 855 [quant-ph/0606026]. · Zbl 1113.81020
[87] H. Kleinert and V. Schulte-Frohlinde, Critical properties of\( \phi \)4theories, World Scientific, Singapore, (2004). · Zbl 1033.81007
[88] J. Smit, Introduction to quantum fields on a lattice, Cambridge Lecture notes in Physics, Cambridge University Press, Cambridge, U.K., (2002). · Zbl 1021.81043
[89] S. Sachdev, Quantum phase transitions, 2nd edition, Cambridge University Press, Cambridge, U.K., (2011). · Zbl 1233.82003
[90] Hung, L-Y; Myers, RC; Smolkin, M., Some calculable contributions to holographic entanglement entropy, JHEP, 08, 039, (2011) · Zbl 1298.81216 · doi:10.1007/JHEP08(2011)039
[91] P. Rath, Holographic complexity, unpublished, Perimeter Scholars International essay, Canada, June 2016.
[92] J. Cotler and R.C. Myers, Circuit complexity for weakly interacting field theories, in progress.
[93] J. Cotler, M.R. Mohammadi Mozaffar, A. Mollabashi and A. Naseh, Renormalization group circuits for weakly interacting continuum field theories, arXiv:1806.02831 [INSPIRE].
[94] J. Cotler, M.R. Mohammadi Mozaffar, A. Mollabashi and A. Naseh, Entanglement renormalization for weakly interacting fields, arXiv:1806.02835 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.