×

Positivity-preserving Lax-Wendroff discontinuous Galerkin schemes for quadrature-based moment-closure approximations of kinetic models. (English) Zbl 1516.65089

Summary: The quadrature-based method of moments (QMOM) offers a promising class of approximation techniques for reducing kinetic equations to fluid equations that are valid beyond thermodynamic equilibrium. In this work, we study a particular five-moment variant of QMOM known as HyQMOM and establish that this system is moment-invertible over a convex region in solution space. We then develop a high-order discontinuous Galerkin (DG) scheme for solving the resulting fluid system. The scheme is based on a predictor-corrector approach, where the prediction is a localized space-time DG scheme. The nonlinear algebraic system in this prediction is solved using a Picard iteration. The correction is a straightforward explicit update based on the time-integral of the evolution equation, where the space-time prediction replaces all instances of the exact solution. In the absence of limiters, the high-order scheme does not guarantee that solutions remain in the convex set over which HyQMOM is moment-realizable. To overcome this, we introduce novel limiters that rigorously guarantee that the computed solution does not leave the convex set of realizable solutions, thus guaranteeing the hyperbolicity of the system. We develop positivity-preserving limiters in both the prediction and correction steps and an oscillation limiter that damps unphysical oscillations near shocks. We also develop a novel extension of this scheme to include a BGK collision operator; the proposed method is shown to be asymptotic-preserving in the high-collision limit. The HyQMOM and the HyQMOM-BGK solvers are verified on several test cases, demonstrating high-order accuracy on smooth problems and shock-capturing capability on problems with shocks. The asymptotic-preserving property of the HyQMOM-BGK solver is also numerically verified.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
82C40 Kinetic theory of gases in time-dependent statistical mechanics
41A58 Series expansions (e.g., Taylor, Lidstone series, but not Fourier series)
35L65 Hyperbolic conservation laws
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35Q20 Boltzmann equations
35Q35 PDEs in connection with fluid mechanics

References:

[1] Abdelmalik, M.; van Brummelen, E., Moment closure approximations of the Boltzmann equation based on \(\varphi \)-divergences, J. Stat. Phys., 164, 77-104 (2016) · Zbl 1353.35218 · doi:10.1007/s10955-016-1529-5
[2] Bardos, C.; Golse, F.; Levermore, D., Fluid dynamic limits of kinetic equations. I. Formal derivations, J. Stat. Phys., 63, 1-2, 323-344 (1991) · doi:10.1007/BF01026608
[3] Bennoune, M.; Lemou, M.; Mieussens, L., Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics, J. Comput. Phys., 227, 3781-3803 (2008) · Zbl 1317.76058 · doi:10.1016/j.jcp.2007.11.032
[4] Bhatnagar, P.; Gross, E.; Krook, M., A model for collision processes in gases I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev. Lett., 94, 511-525 (1954) · Zbl 0055.23609
[5] Böhmer, N.; Torrilhon, M., Entropic quadrature for moment approximations of the Boltzmann-BGK equation, J. Comput. Phys., 401 (2020) · Zbl 1453.76061 · doi:10.1016/j.jcp.2019.108992
[6] Broadwell, J., Study of rarefied shear flow by the discrete velocity method, J. Fluid Mech., 19, 401-414 (1964) · Zbl 0151.41001 · doi:10.1017/S0022112064000817
[7] Broadwell, JE, Shock structure in a simple discrete velocity gas, Phys. Fluids, 7, 1243-1247 (1964) · Zbl 0123.21102 · doi:10.1063/1.1711368
[8] Caflisch, R.; Jin, S.; Russo, G., Uniformly accurate schemes for hyperbolic systems with relaxation, SIAM J. Numer. Anal., 34, 246-281 (1997) · Zbl 0868.35070 · doi:10.1137/S0036142994268090
[9] Cai, Z.; Fan, Y.; Li, R., Globally hyperbolic regularization of grad’s moment system in one dimensional space, Commun. Math. Sci., 11, 547-571 (2013) · Zbl 1301.35083 · doi:10.4310/CMS.2013.v11.n2.a12
[10] Cai, Z.; Fan, Y.; Li, R., Globally hyperbolic regularization of grad’s moment system, Commun. Pure Appl. Math., 32, 464-518 (2014) · Zbl 1307.35182 · doi:10.1002/cpa.21472
[11] Chalons, C., Fox, R., Massot, M.: A multi-Gaussian quadrature method of moments for gas-particle fows in a LES framework. In: Proceedings of the Summer Program, pp. 347-358. Center for Turbulence Research (2010)
[12] Chalons, C.; Kah, D.; Massot, M., Beyond pressureless gas dynamics: quadrature-based velocity moment models, Commun. Math. Sci., 10, 1241-1272 (2012) · Zbl 1282.76160 · doi:10.4310/CMS.2012.v10.n4.a11
[13] Cheng, Y.; Rossmanith, J., A class of quadrature-based moment-closure methods with application to the Vlasov-Poisson-Fokker-Planck system in the high-field limit, J. Comput. Appl. Math., 262, 384-398 (2014) · Zbl 1302.76098 · doi:10.1016/j.cam.2013.10.041
[14] Cockburn, B.; Shu, CW, The Runge-Kutta discontinuous Galerkin method for conservation laws V, J. Comput. Phys., 141, 2, 199-224 (1998) · Zbl 0920.65059 · doi:10.1006/jcph.1998.5892
[15] Coron, F.; Perhame, B., Numerical passage from kinetic to fluid equations, SIAM J. Numer. Anal., 28, 26-42 (1991) · Zbl 0718.76086 · doi:10.1137/0728002
[16] Desjardins, O.; Fox, R.; Villedieu, P., A quadrature-based moment method for dilute fluid-particle flows, J. Comput. Phys., 227, 2514-2539 (2008) · Zbl 1261.76027 · doi:10.1016/j.jcp.2007.10.026
[17] Dreyer, W., Maximisation of the entropy in non-equilibrium, J. Phys. A Math., 20, 6505-6517 (1987) · Zbl 0633.76081 · doi:10.1088/0305-4470/20/18/047
[18] Felton, C., Harris, M., Logemann, C., Nelson, S., Pelakh, I., Rossmanith, J.: A positivity-preserving limiting strategy for locally-implicit Lax-Wendroff discontinuous Galerkin methods. arXiv:1806.06756 (2018)
[19] Fox, R., Computational Models for Turbulent Flows (2003), Cambridge: Cambridge University Press, Cambridge · doi:10.1017/CBO9780511610103
[20] Fox, R., A quadrature-based third-order moment method for dilute gas-particle flows, J. Comput. Phys., 227, 6313-6350 (2008) · Zbl 1388.76247 · doi:10.1016/j.jcp.2008.03.014
[21] Fox, R., Higher-order quadrature-based moment methods for kinetic equations, J. Comput. Phys., 228, 7771-7791 (2009) · Zbl 1391.82049 · doi:10.1016/j.jcp.2009.07.018
[22] Fox, R.; Laurent, F.; Vié, A., Conditional hyperbolic quadrature method of moments for kinetic equations, J. Comput. Phys., 365, 269-293 (2018) · Zbl 1395.82232 · doi:10.1016/j.jcp.2018.03.025
[23] Gabetta, E.; Pareschi, L.; Toscani, G., Relaxation schemes for nonlinear kinetic equations, SIAM J. Numer. Anal., 34, 2168-2194 (1997) · Zbl 0897.76071 · doi:10.1137/S0036142995287768
[24] Gassner, G.; Dumbser, M.; Hindenlang, F.; Munz, CD, Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors, J. Comput. Phys., 230, 4232-4247 (2011) · Zbl 1220.65122 · doi:10.1016/j.jcp.2010.10.024
[25] Grad, H., On the kinetic theory of rarefied gases, Commun. Pure Appl. Math., 2, 331-407 (1949) · Zbl 0037.13104 · doi:10.1002/cpa.3160020403
[26] Guthrey, P.; Rossmanith, J., The regionally-implicit discontinuous Galerkin method: improving the stability of DG-FEM, SIAM J. Num. Anal., 57, 1263-1288 (2019) · Zbl 1422.65221 · doi:10.1137/17M1156174
[27] Jin, S., Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms, J. Comput. Phys., 122, 51-67 (1995) · Zbl 0840.65098 · doi:10.1006/jcph.1995.1196
[28] Jin, S., Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., 21, 441-454 (1999) · Zbl 0947.82008 · doi:10.1137/S1064827598334599
[29] Jin, S., Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review, Riv. Mat. Della Univ. Parma, 3, 177-216 (2012) · Zbl 1259.82079
[30] Jin, S.; Levermore, C., Numerical schemes for hyperbolic conservation laws with stiff relaxation terms, J. Comput. Phys., 126, 449-467 (1996) · Zbl 0860.65089 · doi:10.1006/jcph.1996.0149
[31] Johnson, E.R.: A high-order discontinuous Galerkin finite element method for a quadrature-based moment-closure model. Master’s thesis, Iowa State University (2017)
[32] Junk, M., Domain of definition of Levermore’s five-moment system, J. Stat. Phys., 93, 1143-1167 (1998) · Zbl 0952.82024 · doi:10.1023/B:JOSS.0000033155.07331.d9
[33] Kamermans, M.: Gaussian quadrature weights and abscissae. https://pomax.github.io/bezierinfo/legendre-gauss.html
[34] Koellermeier, J.; Castro, M., High-order non-conservative simulation of hyperbolic moment models in partially conservative form, East Asian J. Appl. Math., 11, 435-467 (2021) · Zbl 1475.65093 · doi:10.4208/eajam.090920.130121
[35] Koellermeier, J.; Torrilhon, M., Numerical solution of hyperbolic moment models for the Boltzmann equation, Eur. J. Mech. B/Fluids, 64, 41-46 (2017) · Zbl 1408.76454 · doi:10.1016/j.euromechflu.2016.11.012
[36] Koellermeier, J.; Schaerer, R.; Torrilhon, M., A framework for hyperbolic approximation of kinetic equations using quadrature-based projection methods, Kinet. Relat. Models, 7, 3, 531-549 (2014) · Zbl 1304.35475 · doi:10.3934/krm.2014.7.531
[37] Lax, P.; Wendroff, B., Systems of conservation laws, Commun. Pure Appl. Math., 13, 217-237 (1960) · Zbl 0152.44802 · doi:10.1002/cpa.3160130205
[38] LeVeque, R., Wave propagation algorithms for multi-dimensional hyperbolic systems, J. Comput. Phys., 131, 327-335 (1997) · Zbl 0872.76075 · doi:10.1006/jcph.1996.5603
[39] LeVeque, R., Finite Volume Methods for Hyperbolic Problems (2002), Cambridge: Cambridge University Press, Cambridge · Zbl 1010.65040 · doi:10.1017/CBO9780511791253
[40] Levermore, C., Moment closure hierarchies for kinetic theories, J. Stat. Phys., 83, 1021-1065 (1996) · Zbl 1081.82619 · doi:10.1007/BF02179552
[41] Marchisio, D.; Fox, R., Solution of population balance equations using the direct quadrature method of moments, J. Aerosol. Sci., 36, 43-73 (2005) · doi:10.1016/j.jaerosci.2004.07.009
[42] Moe, S., Rossmanith, J., Seal, D.: A simple and effective high-order shock-capturing limiter for discontinuous Galerkin methods (2015). arXiv:1507.03024
[43] Moe, S.; Rossmanith, J.; Seal, D., Positivity-preserving discontinuous Galerkin methods with Lax-Wendroff time discretizations, J. Sci. Comput., 71, 44-70 (2017) · Zbl 1462.65152 · doi:10.1007/s10915-016-0291-9
[44] Müller, I.; Ruggeri, T., Extended Thermodynamics (1993), New York: Springer, New York · Zbl 0801.35141 · doi:10.1007/978-1-4684-0447-0
[45] Patel, R.; Desjardins, O.; Fox, R., Three-dimensional conditional hyperbolic quadrature method of moments, J. Comput. Phys. X, 1 (2019) · Zbl 07783818
[46] Pieraccini, S.; Puppo, G., Implicit-explicit schemes for BGK kinetic equations, J. Sci. Comput., 32, 1-28 (2007) · Zbl 1115.76057 · doi:10.1007/s10915-006-9116-6
[47] Platkowski, T.; Illner, R., Discrete velocity models of the Boltzmann equation: a survey on the mathematical aspects of the theory, SIAM Rev., 30, 2, 213-255 (1988) · Zbl 0668.76087 · doi:10.1137/1030045
[48] Qiu, J.; Dumbser, M.; Shu, CW, The discontinuous Galerkin method with Lax-Wendroff type time discretizations, Comput. Methods Appl. Mech. Eng., 194, 4528-4543 (2005) · Zbl 1093.76038 · doi:10.1016/j.cma.2004.11.007
[49] Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Tech. Rep. LA-UR-73-479, Los Alamos Scientific Laboratory (1973)
[50] Rusanov, V., Calculation of interaction of non-steady shock waves with obstacles, J. Comp. Math. Phys. USSR, 1, 267-279 (1961)
[51] Schmüdgen, K., The Moment Problem (2017), New York: Graduate Texts in Mathematics. Springer, New York · Zbl 1383.44004 · doi:10.1007/978-3-319-64546-9
[52] Sod, G., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 27, 1-31 (1978) · Zbl 0387.76063 · doi:10.1016/0021-9991(78)90023-2
[53] Süli, E.; Mayers, D., An Introduction to Numerical Analysis (2003), Cambridge: Cambridge University Press, Cambridge · Zbl 1033.65001 · doi:10.1017/CBO9780511801181
[54] Titarev, V.; Toro, E., ADER: arbitrary high order Godunov approach, J. Sci. Comput., 17, 609-618 (2002) · Zbl 1024.76028 · doi:10.1023/A:1015126814947
[55] Torrilhon, M., Editorial: special issue on moment methods in kinetic gas theory, Contin. Mech. Thermodyn., 21, 341-343 (2009) · doi:10.1007/s00161-009-0129-x
[56] Torrilhon, M., Modeling nonequilibrium gas flows based on moment equations, Ann. Rev. Fluid Mech., 48, 1, 429-458 (2016) · Zbl 1356.76297 · doi:10.1146/annurev-fluid-122414-034259
[57] Vikas, V.; Wang, Z.; Passalacqua, A.; Fox, R., Realizable high-order finite-volume schemes for quadrature-based moment methods, J. Comput. Phys., 230, 5328-5352 (2011) · Zbl 1419.76465 · doi:10.1016/j.jcp.2011.03.038
[58] von Kowalesky, S., Zur Theorie der partiallen Differentialgleichungen, J. Reine Angew. Math., 80, 1-32 (1875) · JFM 07.0201.01
[59] Wiersma, C.: A locally-implicit Lax-Wendroff discontinuous Galerkin scheme with limiters that guarantees moment-realizability for quadrature-based moment closures. Master’s thesis, Iowa State University (2019)
[60] Xiong, T.; Qiu, JM, A hierarchical uniformly high order DG-IMEX scheme for the 1D BGK equation, J. Comput. Phys., 336, 164-191 (2017) · Zbl 1375.76165 · doi:10.1016/j.jcp.2017.01.032
[61] Zhang, X.; Shu, CW, Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments, Proc. R. Soc. A, 467, 2752-2776 (2011) · Zbl 1222.65107 · doi:10.1098/rspa.2011.0153
[62] Zhang, X.; Shu, CW, Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms, J. Comput. Phys., 230, 1238-1248 (2011) · Zbl 1391.76375 · doi:10.1016/j.jcp.2010.10.036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.