×

Moment closure approximations of the Boltzmann equation based on \(\varphi \)-divergences. (English) Zbl 1353.35218

The purpose of this paper is to find numerical approximations of Boltzmanns equation by using moments, which is not an easy task considering its high dimensional setting. First the exponential function is approximated by its standard limit definition. Then several approximation methods are outlined: Galerkin approximation, Levermore’s entropy, and Grad’s muliple Hermite polynomial expansion. The divergence-based Tsallis \(q\)-exponential expansion is described, and compared with the Levermore renormalization map. Finally, \(\varphi\)-divergence minimization and symmetric hyperbolicity are considered. Numerical results in one dimension are plotted.

MSC:

35Q20 Boltzmann equations
82C40 Kinetic theory of gases in time-dependent statistical mechanics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
82C28 Dynamic renormalization group methods applied to problems in time-dependent statistical mechanics
49M15 Newton-type methods
65H10 Numerical computation of solutions to systems of equations

References:

[1] Abdelmalik, M.R.A., van Brummelen E.H.: An entropy stable discontinuous Galerkin finite-element moment method for the Boltzmann equation (2016). arXiv:1602.01312 · Zbl 1359.65192
[2] Ali, S.M., Silvey, S.D.: A general class of coefficients of divergence of one distribution from another. J. R. Stat. Soc. B 28(1), 131-142 (1966) · Zbl 0203.19902
[3] Babuška, I., Miller, A.: The post-processing approach in the finite element method—part 1: calculation of displacements, stresses and other higher derivatives of the displacements. Int. J. Numer. Methods Eng. 20, 1085-1109 (1984) · Zbl 0535.73052 · doi:10.1002/nme.1620200610
[4] Bardos, C., Golse, F., Levermore, D.: Fluid dynamic limits of kinetic equations. I. Formal derivations. J. Stat. Phys. 63(1), 323-344 (1991) · Zbl 0918.35109 · doi:10.1007/BF01026608
[5] Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511-525 (1954) · Zbl 0055.23609 · doi:10.1103/PhysRev.94.511
[6] Bird, G.A.: Direct simulation and the Boltzmann equation. Phys. Fluids 13(11), 2676-2681 (1970) · Zbl 0227.76111 · doi:10.1063/1.1692849
[7] Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, Oxford (1994)
[8] Boltzmann, L.: Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten. Wiener Berichte58:517-560 (1868). reprinted in Hasenhörl, F.P. (ed.): Wissenschaftliche Abhandlungen, vol. I, pp. 49-96. Leipzig, J.A. Barth (1909) · JFM 01.0078.02
[9] Boltzmann, L.: Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung, respektive den Sätzen uber das Wärmegleichgewicht. Wiener Berichte76:373-435 (1877). reprinted in Hasenhörl, F.P. (ed.): Wissenschaftliche Abhandlungen, vol. II, pp. 164-223. Leipzig, J.A. Barth (1909) · JFM 09.0760.01
[10] Boltzmann, L.: Lectures on Gas Theory. Dover Books on Physics. Dover Publications, Mineola (2011)
[11] Brini, F.: Hyperbolicity region in extended thermodynamics with 14 moments. Contin. Mech. Thermodyn. 13, 1-8 (2001) · Zbl 0980.76076 · doi:10.1007/s001610100036
[12] Brini, F., Ruggeri, T.: Entropy principle for the moment systems of degree \[\alpha\] α associated to the Boltzmann equation. Critical derivatives and non controllable boundary dataoltzmann equation. Critical derivatives and non controllable boundary data. Contin. Mech. Thermodyn. 14, 165-189 (2002) · Zbl 1039.76059 · doi:10.1007/s001610100060
[13] Cercignani, C.: Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2000) · Zbl 0961.76002
[14] Csiszár, I.: A class of measures of informativity of observation channels. Period. Math. Hung. 2, 191-213 (1972) · Zbl 0247.94018 · doi:10.1007/BF02018661
[15] Csiszár, I.: Generalized projections for non-negative functions. Acta Math. Hung. 68(1), 161-186 (1995) · Zbl 0837.62006 · doi:10.1007/BF01874442
[16] Dreyer, W.: Maximisation of the entropy in non-equilibrium. J. Phys. A Math. Gen. 20(18), 6505 (1987) · Zbl 0633.76081 · doi:10.1088/0305-4470/20/18/047
[17] Esposito, R., Lebowitz, J.L., Marra, R.: Hydrodynamic limit of the stationary Boltzmann equation in a slab. Commun. Math. Phys. 160(1), 49-80 (1994) · Zbl 0790.76072 · doi:10.1007/BF02099789
[18] Fasino, D.: Spectral properties of hankel matrices and numerical solutions of finite moment problems. J. Comput. Appl. Math. 65(1-3), 145-155 (1995). In: Proceeding of the International Conference on Orthogonality, Moment Problems and Continued Fractions · Zbl 0855.65042
[19] Golse, F., Saint-Raymond, L.: The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math. 155(1), 81-161 (2004) · Zbl 1060.76101 · doi:10.1007/s00222-003-0316-5
[20] Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331-407 (1949) · Zbl 0037.13104 · doi:10.1002/cpa.3160020403
[21] Grad, H.; Flugge, S. (ed.), Principles of the kinetic theory of gases, No. XII (1958), Berlin
[22] Grad, H.: On Boltzmann’s H-theorem. J. Soc. Ind. Appl. Math. 13(1), 259-277 (1965) · doi:10.1137/0113016
[23] Hauck, C.D.: Entropy-Based Moment Closures in Semiconductor Models. PhD thesis, University of Maryland, College Park (2006) · Zbl 0803.76008
[24] Hauck, C.D., Levermore, C.D., Tits, A.L.: Convex duality and entropy-based moment closures: characterizing degenerate densities. In: 47th IEEE Conference on Decision and Control, 2008. CDC 2008, pp. 5092-5097. (2008) · Zbl 1167.49033
[25] Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620-630 (1957) · Zbl 0084.43701 · doi:10.1103/PhysRev.106.620
[26] Jüngel, A.: Transport Equations for Semiconductors. Lecture Notes in Physics. Springer, New York (2009) · doi:10.1007/978-3-540-89526-8
[27] Junk, M.: Domain of definition of Levermore’s five-moment system. J. Stat. Phys. 93, 1143-1167 (1998) · Zbl 0952.82024 · doi:10.1023/B:JOSS.0000033155.07331.d9
[28] Junk, M.: Maximum entropy for reduced moment problems. Math. Models Methods Appl. Sci. 10, 1001-1025 (2000) · Zbl 1012.44005
[29] Junk, M., Unterreiter, A.: Maximum entropy moment systems and Galilean invariance. Contin. Mech. Thermodyn. 14, 563-576 (2002) · Zbl 1024.76044 · doi:10.1007/s00161-002-0096-y
[30] Kaniadakis, G.: Theoretical foundations and mathematical formalism of the power-law tailed statistical distributions. Entropy 15(10), 3983-4010 (2013) · Zbl 06578392 · doi:10.3390/e15103983
[31] Kauf, P., Torrilhon, M., Junk, M.: Scale-induced closure for approximations of kinetic equations. J. Stat. Phys. 41, 848-888 (2010) · Zbl 1213.82070 · doi:10.1007/s10955-010-0073-y
[32] Klenke, A.: Probability Theory: A Comprehensive Course. Universitext (1979). Springer, 2008 · Zbl 1295.60001
[33] Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79-86 (1951) · Zbl 0042.38403 · doi:10.1214/aoms/1177729694
[34] Lasserre, J.B.: Moments. Positive Polynomials and Their Applications. Imperial College Press Optimization Series. Imperial College Press, London (2010) · Zbl 1211.90007
[35] Levermore, C.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83, 1021-1065 (1996) · Zbl 1081.82619 · doi:10.1007/BF02179552
[36] Levermore, C.D., Masmoudi, N.: From the Boltzmann equation to an incompressible Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 196, 753-809 (2010) · Zbl 1304.35476 · doi:10.1007/s00205-009-0254-5
[37] Lions, P.L., Masmoudi, N.: From the Boltzmann equations to the equations of incompressible fluid mechanics, I. Arch. Ration. Mech. Anal. 158(3), 173-193 (2001) · Zbl 0987.76088 · doi:10.1007/s002050100143
[38] Lions, P.L., Masmoudi, N.: From the Boltzmann equations to the equations of incompressible fluid mechanics, II. Arch. Ration. Mech. Anal. 158(3), 195-211 (2011) · Zbl 0987.76088 · doi:10.1007/s002050100144
[39] Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Dimensions. Springer, Berlin (1984) · Zbl 0537.76001 · doi:10.1007/978-1-4612-1116-7
[40] Mantzaflaris, A., Mourrain, B., Tsigaridas, E.: On continued fraction expansion of real roots of polynomial systems, complexity and condition numbers. Theor. Comput. Sci. 412, 2312-2330 (2011) · Zbl 1243.12005 · doi:10.1016/j.tcs.2011.01.009
[41] Mátyás, L.: Generalized Method of Moments Estimation. Themes In Modern Econometrics. Cambridge University Press, Cambridge (1999) · doi:10.1017/CBO9780511625848
[42] McDonald, J., Torrilhon, M.: Affordable robust moment closures for CFD based on the maximum-entropy hierarchy. J. Comput. Phys. 251, 500-523 (2013) · Zbl 1349.82057 · doi:10.1016/j.jcp.2013.05.046
[43] Miyamoto, K.: Plasma Physics and Controlled Nuclear Fusion. Springer, New York (2004) · Zbl 1276.81126
[44] Müller, I., Ruggeri, T.: Extended Thermodynamics. Springer Tracts in Natural Philosophy. Springer, New York (1993) · Zbl 0801.35141 · doi:10.1007/978-1-4684-0447-0
[45] Naudts, J.: Generalised Thermostatistics. Springer, New York (2011) · Zbl 1231.82001 · doi:10.1007/978-0-85729-355-8
[46] Pavan, V.: General entropic approximations for canonical systems described by kinetic equations. J. Stat. Phys. 142, 792-827 (2011) · Zbl 1215.82038 · doi:10.1007/s10955-011-0130-1
[47] Reeks, M.W.: On a kinetic equation for the transport of particles in turbulent flows. Phys. Fluids A Fluid Dyn. 3(3), 446-456 (1991) · Zbl 0719.76068 · doi:10.1063/1.858101
[48] Reeks, M.W.: On the continuum equations for dispersed particles in nonuniform flows. Phys. Fluids A Fluid Dyn. 4(6), 1290-1303 (1992) · Zbl 0781.76089 · doi:10.1063/1.858247
[49] Reeks, M.W.: On the constitutive relations for dispersed particles in nonuniform flows. I: dispersion in a simple shear flow. Phys. Fluid A Fluid Dyn. 5(3), 750-761 (1993) · Zbl 0803.76008 · doi:10.1063/1.858658
[50] Saint-Raymond, L.: Hydrodynamic Limits of the Boltzmann Equation. Lecture Notes in Mathematics, vol. 1971. Springer, new York (2009) · Zbl 1171.82002
[51] Schmeiser, C., Zwirchmayr, A.: Convergence of moment methods for linear kinetic equations. SIAM J. Numer. Anal. 36(1), 74-88 (1998) · Zbl 0938.76096 · doi:10.1137/S0036142996304516
[52] Schneider, J.: Entropic approximation in kinetic theory. ESAIM. Math. Model. Numer. Anal. 38, 541-561 (2004) · Zbl 1084.82010 · doi:10.1051/m2an:2004025
[53] Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, (1948) · Zbl 1154.94303
[54] Shen, C.: Rarefied Gas Dynamics: Fundamentals, Simulations and Micro Flows, Heat and Mass Transfer. Springer, Berlin (2005) · doi:10.1007/b138784
[55] Struchtrup, H.: Stable transport equations for rarefied gases at high orders in the Knudsen number. Phys. Fluids 16, 3921-3934 (2004) · Zbl 1187.76505 · doi:10.1063/1.1782751
[56] Struchtrup, H.: Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory. Interaction of Mechanics and Mathematics Series. Springer, New York (2005) · Zbl 1119.76002
[57] Struchtrup, H., Torrilhon, M.: Regularization of Grad’s 13 moment equations: derivation and linear analysis. Phys. Fluids 15, 2668-2680 (2003) · Zbl 1186.76504 · doi:10.1063/1.1597472
[58] Taylor, J.M.: The condition of gram matrices and related problems. Proc. R. Soc. Edinburgh A Math. 80, 45-56 (1978) · Zbl 0399.65023 · doi:10.1017/S030821050001012X
[59] Torrilhon, M.: Characteristic waves and dissipation in the 13-moment-case. Contin. Mech. Thermodyn. 12, 289-301 (2000) · Zbl 0991.76073 · doi:10.1007/s001610050138
[60] Torrilhon, M.: Hyperbolic moment equations in kinetic gas theory based on multi-variate Pearson-IV-distributions. Commun. Comput. Phys. 7, 639-673 (2010) · Zbl 1364.82050
[61] Torrilhon, M.: Modeling nonequilibrium gas flows based on moment equations. Annu. Rev. Fluid Mech. 48, 429-458 (2016) · Zbl 1356.76297 · doi:10.1146/annurev-fluid-122414-034259
[62] Tsallis, C.: Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World. Springer, New York (2009) · Zbl 1172.82004
[63] Wagner, W.: A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann equation. J. Stat. Phys. 66, 1011-1044 (1992) · Zbl 0899.76312 · doi:10.1007/BF01055714
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.