×

An extended Hamilton principle as unifying theory for coupled problems and dissipative microstructure evolution. (English) Zbl 1537.74011

Summary: An established strategy for material modeling is provided by energy-based principles such that evolution equations in terms of ordinary differential equations can be derived. However, there exist a variety of material models that also need to take into account non-local effects to capture microstructure evolution. In this case, the evolution of microstructure is described by a partial differential equation. In this contribution, we present how Hamilton’s principle provides a physically sound strategy for the derivation of transient field equations for all state variables. Therefore, we begin with a demonstration how Hamilton’s principle generalizes the principle of stationary action for rigid bodies. Furthermore, we show that the basic idea behind Hamilton’s principle is not restricted to isothermal mechanical processes. In contrast, we propose an extended Hamilton principle which is applicable to coupled problems and dissipative microstructure evolution. As example, we demonstrate how the field equations for all state variables for thermo-mechanically coupled problems, i.e., displacements, temperature, and internal variables, result from the stationarity of the extended Hamilton functional. The relation to other principles, as the principle of virtual work and Onsager’s principle, is given. Finally, exemplary material models demonstrate how to use the extended Hamilton principle for thermo-mechanically coupled elastic, gradient-enhanced, rate-dependent, and rate-independent materials.

MSC:

74A60 Micromechanical theories
74F05 Thermal effects in solid mechanics
70S05 Lagrangian formalism and Hamiltonian formalism in mechanics of particles and systems

References:

[1] Altenbach, H.: Kontinuumsmechanik. Springer (2012)
[2] Bailey, CD, The unifying laws of classical mechanics, Found. Phys., 32, 1, 159-176 (2002) · doi:10.1023/A:1013857032364
[3] Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. In: Analysis and Continuum Mechanics, pp. 647-686. Springer (1989)
[4] Bedford, A.: Hamilton’s principle in continuum mechanics, vol. 139. Pitman Advanced Publishing Program (1985) · Zbl 0577.73001
[5] Berdichevsky, V.: Variational Principles of Continuum Mechanics: I. Fundamentals. Springer (2009) · Zbl 1183.49002
[6] Biot, M.A.: Mechanics of incremental deformations (1965)
[7] Bridgman, PW, The Nature of Physical Theory (1936), New York: Dover Publications, New York · Zbl 0046.00316
[8] Capecchi, D.; Ruta, G., A historical perspective of menabrea’s theorem in elasticity, Meccanica, 45, 2, 199-212 (2010) · Zbl 1258.74011 · doi:10.1007/s11012-009-9237-8
[9] Carnot, S.: Reflections on the Motive Power of Fire: And Other Papers on the Second Law of Thermodynamics. Courier Corporation (2012)
[10] Carstensen, C.; Hackl, K.; Mielke, A., Non-convex potentials and microstructures in finite-strain plasticity, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 458, 2018, 299-317 (2002) · Zbl 1008.74016 · doi:10.1098/rspa.2001.0864
[11] Castigliano, A., Nuova teoria intorno all’equilibrio dei sistemi elastici, Atti R. Accad. delle Sci. di Torino, 11, 1875, 132 (1875) · JFM 07.0625.01
[12] Clausius, R., Über die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen, Ann. Phys., 155, 3, 368-397 (1850) · doi:10.1002/andp.18501550306
[13] Coleman, BD, Thermodynamics of materials with memory, Arch. Ration. Mech. Anal., 17, 1, 1-46 (1964) · doi:10.1007/BF00283864
[14] Coleman, BD; Gurtin, ME, Thermodynamics with internal state variables, J. Chem. Phys., 47, 2, 597-613 (1967) · doi:10.1063/1.1711937
[15] Coleman, BD; Noll, W., The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Ration. Mech. Anal., 13, 1, 167-178 (1963) · Zbl 0113.17802 · doi:10.1007/BF01262690
[16] Dimitrijevic, BJ; Hackl, K., A regularization framework for damage-plasticity models via gradient enhancement of the free energy, International Journal for Numerical Methods in Biomedical Engineering, 27, 8, 1199-1210 (2011) · Zbl 1358.74050 · doi:10.1002/cnm.1350
[17] Duhem, P.M.M.: The Aim and Structure of Physical Theory, vol. 13. Princeton University Press (1991) · Zbl 0058.17503
[18] Eckart, C., The thermodynamics of irreversible processes. III. Relativistic theory of the simple fluid, Phys. Rev., 58, 10, 919 (1940) · JFM 66.1077.02 · doi:10.1103/PhysRev.58.919
[19] Fischer, FD; Hackl, K.; Svoboda, J., Improved thermodynamic treatment of vacancy-mediated diffusion and creep, Acta Mater., 108, 347-354 (2016) · doi:10.1016/j.actamat.2016.01.017
[20] Gibbs, J.W.: A Method of Geometrical Representation of the Thermodynamic Properties of Substances by Means of Surfaces. Connecticut Academy of Arts and Sciences (1873) · JFM 05.0585.02
[21] Hackl, K., Generalized standard media and variational principles in classical and finite strain elastoplasticity, J. Mech. Phys. Solids, 45, 5, 667-688 (1997) · Zbl 0974.74512 · doi:10.1016/S0022-5096(96)00110-X
[22] Hackl, K.; Fischer, FD, On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials, Proc. R. Soc. A Math. Phys. Eng. Sci., 464, 2089, 117-132 (2008) · Zbl 1135.80005
[23] Hackl, K.; Fischer, FD; Svoboda, J., A study on the principle of maximum dissipation for coupled and non-coupled non-isothermal processes in materials, Proc. R. Soc. A Math. Phys. Eng. Sci., 467, 2128, 1186-1196 (2011) · Zbl 1219.80048
[24] Halphen, B.; Nguyen, QS, Sur les matériaux standard généralisés, Journal de mécanique, 14, 39-63 (1975) · Zbl 0308.73017
[25] Hamilton, WR, On a general method in dynamics; by which the study of the motions of all free systems of attracting or repelling points is reduced to the search and differentiation of one central relation, or characteristic function, Philos. Trans. R. Soc. Lond., 124, 247-308 (1834)
[26] Hamilton, WR, Second essay on a general method in dynamics, Philos. Trans. R. Soc. Lond., 125, 95-144 (1835)
[27] Horstemeyer, MF; Bammann, DJ, Historical review of internal state variable theory for inelasticity, Int. J. Plast., 26, 9, 1310-1334 (2010) · Zbl 1431.74031 · doi:10.1016/j.ijplas.2010.06.005
[28] Joule, J.P.: Philosophical magazine 23, 263. Scientific Papers, 123 (1843)
[29] Junker, P.; Makowski, J.; Hackl, K., The principle of the minimum of the dissipation potential for non-isothermal processes, Contin. Mech. Thermodyn., 26, 3, 259-268 (2014) · Zbl 1341.80008 · doi:10.1007/s00161-013-0299-4
[30] Junker, P.; Schwarz, S.; Jantos, DR; Hackl, K., A fast and robust numerical treatment of a gradient-enhanced model for brittle damage, Int. J. Multiscale Comput. Eng., 17, 2, 151-180 (2019) · doi:10.1615/IntJMultCompEng.2018027813
[31] Kröner, E., Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen, Arch. Ration. Mech. Anal., 4, 1, 273 (1959) · Zbl 0090.17601 · doi:10.1007/BF00281393
[32] Lee, EH, Elastic-plastic deformation at finite strains, J. Appl. Mech., 36, 1, 1-6 (1969) · Zbl 0179.55603 · doi:10.1115/1.3564580
[33] Lubliner, J., On the structure of the rate equations of materials with internal variables, Acta Mech., 17, 1-2, 109-119 (1973) · Zbl 0279.73002 · doi:10.1007/BF01260883
[34] Lubliner, J., A maximum-dissipation principle in generalized plasticity, Acta Mech., 52, 3-4, 225-237 (1984) · Zbl 0572.73043 · doi:10.1007/BF01179618
[35] Maier, G., Some theorems for plastic strain rates and plastic strains (minimum theorems for plastic strain rates and plastic strains governed by holonomic elastoplastic theory utilizing quadratic functions), Journal de Mécanique, 8, 5-19 (1969) · Zbl 0176.25901
[36] Martin, J.B., Ponter, Alan, R.S.: A note on a work inequality in linear viscoelasticity. Brown University, Division of Engineering (1965)
[37] Maugin, G.A.: The Thermomechanics of Plasticity and Fracture, vol. 7. Cambridge University Press (1992) · Zbl 0753.73001
[38] Maugin, G.A.: The Saga of Internal Variables of State in Continuum Thermo-mechanics (1893-2013). Mechanics Research Communications (2015)
[39] Maxwell, JC, On the dynamical evidence of the molecular constitution of bodies, Nature, 11, 357-359 (1875) · doi:10.1038/011357a0
[40] Menabrea, L.F.: Étude de statique physique: Principe général pour déterminer les pressions et les tensions dans un système élastique (1868) · JFM 20.0215.01
[41] Miehe, C., Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation, Int. J. Numer. Methods Eng., 55, 11, 1285-1322 (2002) · Zbl 1027.74056 · doi:10.1002/nme.515
[42] Miehe, C., A multi-field incremental variational framework for gradient-extended standard dissipative solids, J. Mech. Phys. Solids, 59, 4, 898-923 (2011) · Zbl 1270.74022 · doi:10.1016/j.jmps.2010.11.001
[43] Mielke, A., Energetic formulation of multiplicative elasto-plasticity using dissipation distances, Contin. Mech. Thermodyn., 15, 4, 351-382 (2003) · Zbl 1068.74522 · doi:10.1007/s00161-003-0120-x
[44] Mielke, A., Roubíček, T.: Rate-independent Systems. Theory and Application. Springer (2015) · Zbl 1339.35006
[45] Nguyen, Q.S.: Stability and nonlinear solid mechanics (2000) · Zbl 0949.74001
[46] Onsager, L., Reciprocal relations in irreversible processes. I, Phys. Rev., 37, 4, 405-426 (1931) · JFM 57.1168.10 · doi:10.1103/PhysRev.37.405
[47] Onsager, L., Reciprocal relations in irreversible processes. II, Phys. Rev., 38, 12, 2265 (1931) · Zbl 0004.18303 · doi:10.1103/PhysRev.38.2265
[48] Ortiz, M.; Repetto, EA, Nonconvex energy minimization and dislocation structures in ductile single crystals, J. Mech. Phys. Solids, 47, 2, 397-462 (1999) · Zbl 0964.74012 · doi:10.1016/S0022-5096(97)00096-3
[49] Poynting, JH, XV. On the transfer of energy in the electromagnetic field, Philos. Trans. R. Soc. Lond., 175, 343-361 (1884) · JFM 17.1028.01
[50] Pulte, H.: Das Prinzip der Kleinsten Wirkung und die Kraftkonzeptionen der Rationalen Mechanik - Eine Untersuchung zur Grundlegungsproblematik bei Leonhard Euler. Franz Steiner Verlag, Pierre Louis Moreau de Maupertuis und Joseph Louis Lagrange (1989) · Zbl 0684.01005
[51] Rice, JR, Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity, J. Mech. Phys. Solids, 19, 6, 433-455 (1971) · Zbl 0235.73002 · doi:10.1016/0022-5096(71)90010-X
[52] Simo, JC, A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part i. continuum formulation., Comput. Methods Appl. Mech. Eng., 66, 2, 199-219 (1988) · Zbl 0611.73057 · doi:10.1016/0045-7825(88)90076-X
[53] Simo, JC; Honein, T., Variational formulation, discrete conservation laws, and path-domain independent integrals for elasto-viscoplasticity, J. Appl. Mech., 57, 488-497 (1990) · Zbl 0739.73046 · doi:10.1115/1.2897050
[54] Thomson, W., XV.—On the dynamical theory of heat, with numerical results deduced from Mr Joule’s equivalent of a thermal unit, and M. Regnault’s observations on steam, Trans. R. Soc. Edinb., 20, 2, 261-288 (1853) · doi:10.1017/S0080456800033172
[55] Truesdell, C.: Rational Thermodynamics. Springer (2012) · Zbl 0598.73002
[56] von Helmholtz, H., Ueber die physikalische Bedeutung des Prinicips der kleinsten Wirkung, J. Reine Angew. Math., 100, 137-166 (1887) · JFM 18.0941.01
[57] Ziegler, H., An attempt to generalize onsager’s principle, and its significance for rheological problems, Z. Angew. Math. Phys., 9, 5-6, 748-763 (1958) · Zbl 0081.40002 · doi:10.1007/BF02424793
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.