×

The principle of the minimum of the dissipation potential for non-isothermal processes. (English) Zbl 1341.80008

Summary: In this paper, we contribute to the methodology of material modeling by presenting a potentialbased approach for non-isothermal inelastic processes. It is based on the principle of the minimum of the dissipation potential which was used previously only in the isothermal context. In contrast to the principle of maximum dissipation, the presented procedure results in mathematically simplified equations. Due to its variational character, the inclusion of constraints is very simple. After derivation of our method, we use the examples of non-isothermal perfect plasticity and shape memory alloys for demonstration of the validity and performance of the concept.

MSC:

80A10 Classical and relativistic thermodynamics
74A15 Thermodynamics in solid mechanics
Full Text: DOI

References:

[1] Coleman, B.D.; Noll, W., The thermodynamics of elastic materials with heat conduction and viscosity, Arch Ration. Mechan. Anal., 13, 167-178, (1963) · Zbl 0113.17802 · doi:10.1007/BF01262690
[2] Coleman, B.D., Thermodynamics of materials with memory, Arch Ration. Mechan. Anal., 17, 1-45, (1964)
[3] Coleman, B.D.; Gurtin, M.E., Thermodynamics with internal state variables, J. Chem. Phys., 47, 597-613, (1967) · doi:10.1063/1.1711937
[4] Dill, E.H.: Simple materials with fading memory. In: Eringen, A.C. (ed.) Continuum Physics, vol. 2. Academic Press, New York (1975) · Zbl 0252.76003
[5] Edelen, D., On the existence of symmetry relations and dissipation potentials, Arch Ration. Mechan. Anal., 51, 218-227, (1973) · Zbl 0269.73003 · doi:10.1007/BF00276075
[6] Fu, S.; Huo, Y.; Müller, I., Thermodynamics of pseudoelasticity—an analytical approach, Acta Mechan., 99, 1-19, (1993) · doi:10.1007/BF01177231
[7] Germain, P.; Nguyen, Q.S.; Suquet, P., Continuum thermodynamics, J. Appl. Mechan., 50, 1010-1020, (1983) · Zbl 0536.73004 · doi:10.1115/1.3167184
[8] Green, A.E., Naghdi, P.M.: A unified procedure for construction of theories of deformable media, II. Generalized continua. In: Proceedings of Mathematical and Physical Sciences, vol. 448, pp. 357-377 (1995) · Zbl 0868.73013
[9] Hackl, K., Generalized standard media and variational principles in classical and finite strain elastoplasticity, J. Mechan. Phys. Solids, 45, 667-688, (1997) · Zbl 0974.74512 · doi:10.1016/S0022-5096(96)00110-X
[10] Hackl, K.; Fischer, F.D., On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials, Proc. R. Soc. A, 464, 117-132, (2008) · Zbl 1135.80005 · doi:10.1098/rspa.2007.0086
[11] Hackl, K.; Fischer, F.D.; Svoboda, J., A study on the principle of maximum dissipation for coupled and non-coupled non-isothermal processes in materials, Proc. R. Soc. A, 467, 1186-1196, (2011) · Zbl 1219.80048 · doi:10.1098/rspa.2010.0179
[12] Hackl, K.; Fischer, F.D.; Svoboda, J., A study on the principle of maximum dissipation for coupled and non-coupled non-isothermal processes in materials, Proc. R. Soc. A, 467, 2422-2426, (2011) · Zbl 1228.80002 · doi:10.1098/rspa.2011.0015
[13] Hackl, K.; Heinen, R., A micromechanical model for pretextured polycrystalline shape-memory alloys including elastic anisotropy, Continuum Mechan. Thermodyn., 19, 499, (2008) · Zbl 1170.74315 · doi:10.1007/s00161-008-0067-z
[14] Halphen, B.; Nguyen, Q.S., Sur LES materiaux standards generalizes, J. Mechan., 14, 39-63, (1975) · Zbl 0308.73017
[15] Holzapfel G.A.: Nonlinear Solid Mechanics. Wiley, New York (2000) · Zbl 0980.74001
[16] Junker, P.; Hackl, K., Numerical simulations of polycrystalline shape-memory alloys based on a micromechanical model, Proc. Appl. Math. Mechan., 9, 339-340, (2009) · doi:10.1002/pamm.200910143
[17] Junker, P.; Hackl, K., About the influence of heat conductivity on the mechanical behavior of polycrystalline shape memory alloys, Int. J. Struct. Changes Solids, 3, 49-62, (2011)
[18] Junker, P.: Simulation of shape memory alloys—material modeling using the principle of maximum dissipation. PhD-Thesis, urn:nbn:de:hbz:294-33862 (2011) · Zbl 0974.74512
[19] Kestin, J., Rice, J.R.: Paradoxes in the application of thermodynamics to strained rods. In: Stuart, E.B. (ed.) A Critical Review of Thermodynamics. MonoBook Corp., Baltimore (1970)
[20] Liu, I.-S., Method of Lagrange multipliers for the exploitation of the entropy inequality, Arch. Ration. Mechan. Anal., 46, 131-148, (1972) · Zbl 0252.76003
[21] Lubliner, J., A maximum-dissipation principle in generalized plasticity, Acta Mechan., 52, 225-237, (1984) · Zbl 0572.73043 · doi:10.1007/BF01179618
[22] Maugin, G.A., Metrikine, A.V. (eds.): Mechanics of Generalized Continua: One Hundred Years After the Cosserats (Advances in Mechanics and Mathematics). Springer, New York (2008)
[23] Miehe, C.; Schotte, J.; Lambrecht, M., Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. application to the texture analysis of polycrystals, J. Mechan. Phys. Solids, 50, 2123-2167, (2002) · Zbl 1151.74403 · doi:10.1016/S0022-5096(02)00016-9
[24] Onsager, L., Reciprocal relations in irreversible processes. I, Phys. Rev., 37, 405-426, (1931) · JFM 57.1168.10 · doi:10.1103/PhysRev.37.405
[25] Ortiz, M.; Stainier, L., The variational formulation of viscoplastic constitutive updates, Comput. Methods Appl. Mechan. Eng., 171, 419-444, (1999) · Zbl 0938.74016 · doi:10.1016/S0045-7825(98)00219-9
[26] Petryk, H., Incremental energy minimization in dissipative solids, Comptes Rendus Mécanique, 331, 469-474, (2003) · Zbl 1177.74171 · doi:10.1016/S1631-0721(03)00109-8
[27] Rice, J.R., Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity, J. Mechan. Phys. Solids, 9, 433-455, (1971) · Zbl 0235.73002 · doi:10.1016/0022-5096(71)90010-X
[28] Silhavy M.: The Mechanics and Thermodynamics of Continuous Media. Springer, New York (1997) · Zbl 0870.73004 · doi:10.1007/978-3-662-03389-0
[29] Simo, J.C.; Miehe, C., Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation, Comput. Methods Appl. Mechan. Eng., 98, 41-104, (1992) · Zbl 0764.73088 · doi:10.1016/0045-7825(92)90170-O
[30] Truesdell C.A., Noll W.: The Non-Linear Field Theories of Mechanics. Springer, Berlin (2010) · Zbl 0779.73004
[31] Ziegler, H., Wehrli, C.: The derivation of constitutive relations from the free energy and the dissipation function. In: Wu, Th.Y., Hutchinson, J.W. (eds.) Advances in Applied Mechanics, vol. 25, pp. 183-237 (1987) · Zbl 0719.73001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.