×

An efficient low-dissipation hybrid central/WENO scheme for compressible flows. (English) Zbl 1500.76061

Summary: This paper develops a new hybrid finite difference scheme which consists of a nonlinear WENOCU4 scheme to maintain the numerical stability near discontinuities and a fourth-order linear central scheme elsewhere to accurately resolve smooth fluctuations and to speed up the computation. The central scheme is constructed in a robust skew-symmetric form which satisfies energy conservation property. A new efficient discontinuity detector is employed to identify the smoothness of the flowfield. As for the one-dimensional scalar equations, the hybrid scheme behaves almost no attenuation associated with propagation error. The quantitative analysis of the shock-capturing error is investigated. The hybrid scheme also exhibits high-resolution spectral property in the wavenumber space. Extensive cases of Euler equations further demonstrate the high-resolution shock-capturing ability of the detector, remarkable vortices-resolving capacity, and superior computational efficiency of the hybrid scheme. The reduced computational cost of the hybrid scheme is about 30–50% with respect to the baseline scheme.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)
76L05 Shock waves and blast waves in fluid mechanics
Full Text: DOI

References:

[1] Adams, N. A.; Shariff, K., A High-Resolution Hybrid Compact-Eno Scheme for Shock-Turbulence Interaction Problems, Journal of Computational Physics, 127, 1, 27-51 (1996) · Zbl 0859.76041 · doi:10.1006/jcph.1996.0156
[2] Babatin, M. M.; Zahran, Y. H., Adaptive Multi-Resolution Central-Upwind Schemes for Systems of Conservation Laws, International Journal of Computational Fluid Dynamics, 23, 10, 723-735 (2009) · Zbl 1278.76065 · doi:10.1080/10618561003745464
[3] Blaisdell, G. A.; Spyropoulos, E. T.; Qin, J. H., The Effect of the Formulation of Nonlinear Terms on Aliasing Errors in Spectral Methods, Applied Numerical Mathematics, 21, 3, 207-219 (1996) · Zbl 0858.76060 · doi:10.1016/0168-9274(96)00005-0
[4] Borges, R.; Carmona, M.; Costa, B.; Don, Wai Sun, An Improved Weighted Essentially non-Oscillatory Scheme for Hyperbolic Conservation Laws, Journal of Computational Physics, 227, 6, 3191-3211 (2008) · Zbl 1136.65076 · doi:10.1016/j.jcp.2007.11.038
[5] Borisov, V. S.; Mond, M., On Stability of Difference Schemes. Central Schemes for Hyperbolic Conservation Laws with Source Terms, Applied Numerical Mathematics, 62, 8, 895-921 (2012) · Zbl 1243.65108 · doi:10.1016/j.apnum.2012.02.005
[6] Casper, J.; Carpenter, M. H., Computational Considerations for the Simulation of Shock-Induced Sound, SIAM Journal on Scientific Computing, 19, 3, 813-828 (1998) · Zbl 0918.76045 · doi:10.1137/s1064827595294101
[7] Ducros, F.; Laporte, F.; Soulères, T.; Guinot, V.; Moinat, P.; Caruelle, B., High-Order Fluxes for Conservative Skew-Symmetric-Like Schemes in Structured Meshes: Application to Compressible Flows, Journal of Computational Physics, 161, 1, 114-139 (2000) · Zbl 0972.76066 · doi:10.1006/jcph.2000.6492
[8] Feiereisen, W. J.1983. “Numerical Simulation of a Compressible, Homogeneous, Turbulent Shear Flow.” NASA CR-164953.
[9] Fleischmann, N.; Adami, S.; Adams, N. A., Numerical Symmetry-Preserving Techniques for Low-Dissipation Shock-Capturing Schemes, Computers & Fluids, 189, 94-107 (2019) · Zbl 1519.76207 · doi:10.1016/j.compfluid.2019.04.004
[10] Gassner, G. J.; Winters, A. R.; Kopriva, D. A., Split Form Nodal Discontinuous Galerkin Schemes with Summation-by-Parts Property for the Compressible Euler Equations, Journal of Computational Physics, 327, 39-66 (2016) · Zbl 1422.65280 · doi:10.1016/j.jcp.2016.09.013
[11] Harten, A., The Artificial Compression Method for Computation of Shocks and Contact Discontinuities. Iii. Self-Adjusting Hybrid Schemes, Mathematics of Computation, 32, 142, 363-389 (1978) · Zbl 0409.76057 · doi:10.1090/S0025-5718-1978-0489360-X
[12] Hill, D. J.; Pullin, D. I., Hybrid Tuned Center-Difference-Weno Method for Large Eddy Simulations in the Presence of Strong Shocks, Journal of Computational Physics, 194, 2, 435-450 (2004) · Zbl 1100.76030 · doi:10.1016/j.jcp.2003.07.032
[13] Honein, A. E.; Moin, P., Higher Entropy Conservation and Numerical Stability of Compressible Turbulence Simulations, Journal of Computational Physics, 201, 2, 531-545 (2004) · Zbl 1061.76044 · doi:10.1016/j.jcp.2004.06.006
[14] Hu, X. Y.; Wang, Q.; Adams, N. A., An Adaptive Central-Upwind Weighted Essentially non-Oscillatory Scheme, Journal of Computational Physics, 229, 8952-8965 (2010) · Zbl 1204.65103 · doi:10.1016/j.jcp.2010.08.019
[15] Jameson, A., Formulation of Kinetic Energy Preserving Conservative Schemes for Gas Dynamics and Direct Numerical Simulation of one-Dimensional Viscous Compressible Flow in a Shock Tube Using Entropy and Kinetic Energy Preserving Schemes, Journal of Scientific Computing, 34, 2, 188-208 (2008) · Zbl 1133.76031 · doi:10.1007/s10915-007-9172-6
[16] Jameson, A., Schmidt, W., and Turkel, E.. 1981. “Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge Kutta Time Stepping Schemes.” 14th fluid and plasma dynamics conference, doi:10.2514/6.1981-1259.
[17] Jeong, J.; Hussain, F., On the Identification of a Vortex, Journal of Fluid Mechanics, 285, 69-94 (1995) · Zbl 0847.76007 · doi:10.1017/S0022112095000462
[18] Jiang, G. S.; Shu, C. W., Efficient Implementation of Weighted eno Schemes, Journal of Computational Physics, 126, 1, 202-228 (1996) · Zbl 0877.65065 · doi:10.1006/jcph.1996.0130
[19] Kennedy, C. A.; Gruber, A., Reduced Aliasing Formulations of the Convective Terms Within the Navier-Stokes Equations for a Compressible Fluid, Journal of Computational Physics, 227, 3, 1676-1700 (2008) · Zbl 1290.76135 · doi:10.1016/j.jcp.2007.09.020
[20] Kim, D.; Kwon, J. H., A High-Order Accurate Hybrid Scheme Using a Central Flux Scheme and a Weno Scheme for Compressible Flowfield Analysis, Journal of Computational Physics, 210, 2, 554-583 (2005) · Zbl 1113.76062 · doi:10.1016/j.jcp.2005.04.023
[21] Kim, C. H.; You, K.-I.; Ha, Y., Hybrid Finite Difference Weighted Essentially non-Oscillatory Schemes for the Compressible Ideal Magnetohydrodynamics Equation, Journal of Scientific Computing, 74, 2, 607-630 (2017) · Zbl 1395.65119 · doi:10.1007/s10915-017-0462-3
[22] Kok, J. C., A High-Order low-Dispersion Symmetry-Preserving Finite-Volume Method for Compressible Flow on Curvilinear Grids, Journal of Computational Physics, 228, 18, 6811-6832 (2009) · Zbl 1261.76020 · doi:10.1016/j.jcp.2009.06.015
[23] Larsson, J.; Lele, S.; Moin, P., Effect of Numerical Dissipation on the Predicted Spectra for Compressible Turbulence, Annual Research Briefs, 47-57 (2007)
[24] Lax, P. D., Weak Solution of non-Linear Hyperbolic Equations and Their Numerical Computations, Communications on Pure and Applied Mathematics, 7, 159-193 (1954) · Zbl 0055.19404 · doi:10.1002/cpa.3160070112
[25] Lax, P. D.; Liu, X. D., Solution of Two-Dimensional Riemann Problems of Gas Dynamics by Positive Schemes, SIAM Journal on Scientific Computing, 19, 319-340 (1998) · Zbl 0952.76060 · doi:10.1137/S1064827595291819
[26] Lele, S. K., Compact Finite Difference Schemes with Spectral-Like Resolution, Journal of Computational Physics, 103, 1, 16-42 (1992) · Zbl 0759.65006 · doi:10.1016/0021-9991(92)90324-R
[27] Li, X. L.; Fu, D. X.; Ma, Y. W., Direct Numerical Simulation of Compressible Isotropic Turbulence, Science in China Series A, 45, 11, 1452-1460 (2002) · Zbl 1145.76388 · doi:10.1007/BF02880040
[28] Li, L.; Wang, H. B.; Zhao, G. Y.; Sun, M. B.; Xiong, D. P.; Tang, T., Efficient Wenocu4 Scheme with Three Different Adaptive Switches, Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21, 9, 695-720 (2020) · doi:10.1631/jzus.A2000006
[29] Li, Y.; Yan, C.; Yu, J.; Liu, H., A New High-Accuracy Scheme for Compressible Turbulent Flows, International Journal of Computational Fluid Dynamics, 31, 9, 362-378 (2017) · Zbl 07518038 · doi:10.1080/10618562.2017.1365844
[30] Liu, X. D.; Osher, S.; Chan, T., Weighted Essentially non-Oscillatory Schemes, Journal of Computational Physics, 115, 1, 200-212 (1994) · Zbl 0811.65076 · doi:10.1006/jcph.1994.1187
[31] Mahmoudnejad, N.; Hoffmann, K. A., A Hybrid Scheme for the Numerical Simulation of Shock/Discontinuity Problems, International Journal of Computational Fluid Dynamics, 25, 9, 469-486 (2011) · Zbl 1271.76214 · doi:10.1080/10618562.2011.632371
[32] Morinishi, Y., Skew-symmetric Form of Convective Terms and Fully Conservative Finite Difference Schemes for Variable Density low-Mach Number Flows, Journal of Computational Physics, 229, 2, 276-300 (2010) · Zbl 1375.76113 · doi:10.1016/j.jcp.2009.09.021
[33] Movahed, P.; Johnsen, E., A Solution-Adaptive Method for Efficient Compressible Multifluid Simulations, with Application to the Richtmyer-Meshkov Instability, Journal of Computational Physics, 239, 166-186 (2013) · doi:10.1016/j.jcp.2013.01.016
[34] Peng, J.; Shen, Y., A Novel Weighting Switch Function for Uniformly High-Order Hybrid Shock-Capturing Schemes, International Journal for Numerical Methods in Fluids, 83, 9, 681-703 (2017) · doi:10.1002/fld.4285
[35] Pirozzoli, S., Conservative Hybrid Compact-Weno Schemes for Shock-Turbulence Interaction, Journal of Computational Physics, 178, 1, 81-117 (2002) · Zbl 1045.76029 · doi:10.1006/jcph.2002.7021
[36] Pirozzoli, S., On the Spectral Properties of Shock-Capturing Schemes, Journal of Computational Physics, 219, 489-497 (2006) · Zbl 1103.76040 · doi:10.1016/j.jcp.2006.07.009
[37] Pirozzoli, S., Generalized Conservative Approximations of Split Convective Derivative Operators, Journal of Computational Physics, 229, 19, 7180-7190 (2010) · Zbl 1426.76485 · doi:10.1016/j.jcp.2010.06.006
[38] Pirozzoli, S., Numerical Methods for High-Speed Flows, Annual Review of Fluid Mechanics, 43, 163-194 (2011) · Zbl 1299.76103 · doi:10.1146/annurev-fluid-122109-160718
[39] Pirozzoli, S., Stabilized non-Dissipative Approximations of Euler Equations in Generalized Curvilinear Coordinates, Journal of Computational Physics, 230, 8, 2997-3014 (2011) · Zbl 1316.76064 · doi:10.1016/j.jcp.2011.01.001
[40] Remacle, J.-F.; Flaherty, J. E.; Shephard, M. S., An Adaptive Discontinuous Galerkin Technique with an Orthogonal Basis Applied to Compressible Flow Problems, SIAM Review, 45, 1, 53-72 (2003) · Zbl 1127.65323 · doi:10.1137/S00361445023830
[41] Ren, Y. X.; Liu, M. E.; Zhang, H. X., A Characteristic-Wise Hybrid Compact-Weno Scheme for Solving Hyperbolic Conservation Laws, Journal of Computational Physics, 192, 2, 365-386 (2003) · Zbl 1037.65090 · doi:10.1016/j.jcp.2003.07.006
[42] Shu, C. W.; Osher, S., Efficient Implementation of Essentially non-Oscillatory Shock Capturing Schemes, Journal of Computational Physics, 77, 439-471 (1988) · Zbl 0653.65072 · doi:10.1016/0021-9991(88)90177-5
[43] Sjögreen, B.; Yee, H. C., Multiresolution Wavelet Based Adaptive Numerical Dissipation Control for High Order Methods, Journal of Scientific Computing, 20, 2, 211-255 (2004) · Zbl 1106.76411 · doi:10.1023/B:JOMP.0000008721.30071.e4
[44] Sod, G. A., A Survey of Several Finite Difference Methods for Systems of non-Linear Hyperbolic Conservation Laws, Journal of Computational Physics, 27, 1-31 (1978) · Zbl 0387.76063 · doi:10.1016/0021-9991(78)90023-2
[45] Subbareddy, P. K.; Candler, G. V., A Fully Discrete, Kinetic Energy Consistent Finite-Volume Scheme for Compressible Flows, Journal of Computational Physics, 228, 5, 1347-1364 (2009) · Zbl 1157.76029 · doi:10.1016/j.jcp.2008.10.026
[46] Taylor, E. M.; Wu, M.; Martín, M. P., Optimization of Nonlinear Error for Weighted Essentially non-Oscillatory Methods in Direct Numerical Simulations of Compressible Turbulence, Journal of Computational Physics, 223, 1, 384-397 (2007) · Zbl 1165.76350 · doi:10.1016/j.jcp.2006.09.010
[47] Vevek, U. S.; Zang, B.; New, T. H., An Efficient Hybrid Method for Solving Euler Equations, Journal of Scientific Computing, 81, 2, 732-762 (2019) · Zbl 1433.65167 · doi:10.1007/s10915-019-01033-x
[48] Visbal, M. R.; Gaitonde, D. V., Shock Capturing Using Compact-Differencing-Based Methods, 43rd AIAA aerospace sciences meeting and exhibit. AIAA Paper 2005-1265 (2005) · doi:10.2514/6.2005-1265
[49] White, J. A.; Baurle, R. A.; Fisher, T. C.; Quinlan, J. R.; Black, W. S., Low-Dissipation Advection Schemes Designed for Large Eddy Simulations of Hypersonic Propulsion Systems, 48th AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit. AIAA Paper 2012-4263 (2012) · doi:10.2514/6.2012-4263
[50] Woodward, P.; Colella, P., The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks, Journal of Computational Physics, 54, 1, 115-173 (1984) · Zbl 0573.76057 · doi:10.1016/0021-9991(84)90142-6
[51] Zhao, G. Y.; Sun, M. B.; Memmolo, A.; Pirozzoli, S., A General Framework for the Evaluation of Shock-Capturing Schemes, Journal of Computational Physics, 376, 924-936 (2019) · Zbl 1416.65586 · doi:10.1016/j.jcp.2018.10.013
[52] Zhao, G. Y.; Sun, M. B.; Pirozzoli, S., On Shock Sensors for Hybrid Compact/Weno Schemes, Computers & Fluids, 199, 104439 (2020) · Zbl 1519.76223 · doi:10.1016/j.compfluid.2020.104439
[53] Zhou, Q.; He, F.; Shen, M. Y., A Family of Efficient High-Order Hybrid Finite Difference Schemes Based on Weno Schemes, International Journal of Computational Fluid Dynamics, 26, 4, 205-229 (2012) · Zbl 1532.76074 · doi:10.1080/10618562.2012.697157
[54] Zhu, Q.; Gao, Z.; Don, W. S.; Lv, X., Well-Balanced Hybrid Compact-Weno Scheme for Shallow Water Equations, Applied Numerical Mathematics, 112, 65-78 (2017) · Zbl 1381.76228 · doi:10.1016/j.apnum.2016.10.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.