×

An efficient hybrid method for solving Euler equations. (English) Zbl 1433.65167

The authors present a hybrid method for solving Euler equations compatible with high-order schemes. A seventh-order WENO scheme is used for spatial reconstruction. The method combines a simple MUSCL-type flux method and a characteristic flux approach. In the MUSCL-type flux approach, the inviscid fluxes are computed, using approximate Riemann solvers HLL and HLLC schemes based on the WENO-reconstructed state variables. In critical regions where VF (variable-based flux) may produce spurious oscillations, a novel, low-dissipation HLL-based CF (characteristic flux) approach is applied. The VF/CF hybrid method is shown to produce high-resolution, essentially non-oscillatory results for a number of 1D and 2D problems at a fraction of the cost of a pure CF approach. The results highlight the relation between Kelvin-Helmholtz roll-ups and numerical instabilities along slip lines.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35Q31 Euler equations
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76L05 Shock waves and blast waves in fluid mechanics

Software:

OpenFOAM; HLLE; HE-E1GODF
Full Text: DOI

References:

[1] Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357-393 (1983) · Zbl 0565.65050
[2] Johnsen, E., Larsson, J., Bhagatwala, A.V., Cabot, W.H., Moin, P., Olson, B.J., Rawat, P.S., Shankar, S.K., Sjögreen, B., Yee, H.C., Zhong, X., Lele, S.K.: Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. J. Comput. Phys. 229, 1213-1237 (2010) · Zbl 1329.76138
[3] Ekaterinaris, J.A.: High-order accurate, low numerical diffusion methods for aerodynamics. Prog. Aerosp. Sci. 41, 192-300 (2005)
[4] Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231-303 (1987) · Zbl 0652.65067
[5] Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200-212 (1994) · Zbl 0811.65076
[6] Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202-228 (1996) · Zbl 0877.65065
[7] Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542-567 (2005) · Zbl 1072.65114
[8] Shen, Y., Zha, G.: Improved seventh-order WENO scheme. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics (2010)
[9] Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766-1792 (2011) · Zbl 1211.65108
[10] Feng, H., Hu, F., Wang, R.: A new mapped weighted essentially non-oscillatory scheme. J. Sci. Comput. 51, 449-473 (2012) · Zbl 1253.65124
[11] Feng, H., Huang, C., Wang, R.: An improved mapped weighted essentially non-oscillatory scheme. Appl. Math. Comput. 232, 453-468 (2014) · Zbl 1410.65306
[12] Acker, F., de Borges, R., Costa, B.: An improved WENO-Z scheme. J. Comput. Phys. 313, 726-753 (2016) · Zbl 1349.65260
[13] Wang, R., Feng, H., Huang, C.: A new mapped weighted essentially non-oscillatory method using rational mapping function. J. Sci. Comput. 67, 540-580 (2016) · Zbl 1339.65140
[14] Godunov, S.K.: A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics. SB MATH 47, 357-393 (1959)
[15] van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101-136 (1979) · Zbl 1364.65223
[16] Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, New York (2013)
[17] Qiu, J., Shu, C.W.: On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes. J. Comput. Phys. 183, 187-209 (2002) · Zbl 1018.65106
[18] Adams, N.A., Shariff, K.: A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. J. Comput. Phys. 127, 27-51 (1996) · Zbl 0859.76041
[19] Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J. Comput. Phys. 178, 81-117 (2002) · Zbl 1045.76029
[20] Ren, Y.-X., Liu, M.E., Zhang, H.: A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 192, 365-386 (2003) · Zbl 1037.65090
[21] Kim, D., Kwon, J.H.: A high-order accurate hybrid scheme using a central flux scheme and a WENO scheme for compressible flowfield analysis. J. Comput. Phys. 210, 554-583 (2005) · Zbl 1113.76062
[22] Costa, B., Don, W.S.: High order hybrid central-WENO finite difference scheme for conservation laws. J. Comput. Appl. Math. 204, 209-218 (2007) · Zbl 1115.65091
[23] Hu, X.Y., Wang, B., Adams, N.A.: An efficient low-dissipation hybrid weighted essentially non-oscillatory scheme. J. Comput. Phys. 301, 415-424 (2015) · Zbl 1349.76479
[24] Peng, J., Zhai, C., Ni, G., Yong, H., Shen, Y.: An adaptive characteristic-wise reconstruction WENO-Z scheme for gas dynamic Euler equations. Comput. Fluids. 179, 34-51 (2019) · Zbl 1411.76106
[25] Lee, Y., Yao, W., Fan, X.: A low-dissipation scheme based on OpenFoam designed for large eddy simulation in compressible flow. In: 21st AIAA International Space Planes and Hypersonics Technologies Conference. American Institute of Aeronautics and Astronautics (2017)
[26] Bhagatwala, A., Lele, S.K.: A modified artificial viscosity approach for compressible turbulence simulations. J. Comput. Phys. 228, 4965-4969 (2009) · Zbl 1280.76011
[27] Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C., Poinsot, T.: Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152, 517-549 (1999) · Zbl 0955.76045
[28] Gottlieb, S., Shu, C.W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67, 73-85 (1998) · Zbl 0897.65058
[29] Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22, 656-672 (2000) · Zbl 0967.65089
[30] Titarev, V.A., Toro, E.F.: Finite-volume WENO schemes for three-dimensional conservation laws. J. Comput. Phys. 201, 238-260 (2004) · Zbl 1059.65078
[31] Ritos, K., Kokkinakis, I.W., Drikakis, D.: Physical insight into the accuracy of finely-resolved iLES in turbulent boundary layers. Comput. Fluids 169, 309-316 (2018) · Zbl 1410.76260
[32] Ritos, K., Kokkinakis, I.W., Drikakis, D.: Performance of high-order implicit large eddy simulations. Comput. Fluids 173, 307-312 (2018) · Zbl 1410.76117
[33] Harten, A.; Lax, PD; Leer, B.; Hussaini, MY (ed.); Leer, B. (ed.); Rosendale, J. (ed.), On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, 53-79 (1997), Berlin
[34] Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25-34 (1994) · Zbl 0811.76053
[35] Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1-31 (1978) · Zbl 0387.76063
[36] Shu, Chi-Wang; Osher, Stanley, Efficient Implementation of Essentially Non-oscillatory Shock-Capturing Schemes, II, 328-374 (1989), Berlin, Heidelberg · Zbl 0674.65061
[37] Lax, P., Liu, X.: Solution of two-dimensional riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19, 319-340 (1998) · Zbl 0952.76060
[38] Karni, S.: Multicomponent flow calculations by a consistent primitive algorithm. J. Comput. Phys. 112, 31-43 (1994) · Zbl 0811.76044
[39] Johnsen, E., Colonius, T.: Implementation of WENO schemes in compressible multicomponent flow problems. J. Comput. Phys. 219, 715-732 (2006) · Zbl 1189.76351
[40] Pandolfi, M., D’Ambrosio, D.: Numerical instabilities in upwind methods: analysis and cures for the “carbuncle” phenomenon. J. Comput. Phys. 166, 271-301 (2001) · Zbl 0990.76051
[41] Quirk, JJ; Hussaini, MY (ed.); Leer, B. (ed.); Rosendale, J. (ed.), A contribution to the great Riemann solver debate, 550-569 (1997), New York
[42] Emery, A.F.: An evaluation of several differencing methods for inviscid fluid flow problems. J. Comput. Phys. 2, 306-331 (1968) · Zbl 0155.21102
[43] Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115-173 (1984) · Zbl 0573.76057
[44] Yee, H.C., Sandham, N.D., Djomehri, M.J.: Low-dissipative high-order shock-capturing methods using characteristic-based filters. J. Comput. Phys. 150, 199-238 (1999) · Zbl 0936.76060
[45] Vevek, U.S., Zang, B., New, T.H.: On alternative setups of the double Mach reflection problem. J. Sci. Comput. 78, 1291-1303 (2019) · Zbl 1417.65161
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.