×

Existence and multiplicity of the positive normalized solutions to the coupled Hartree-Fock type nonlocal elliptic system. (English) Zbl 1505.35142

Summary: In this paper we investigate the existence of the positive normalized solutions for the coupled Hartree-Fock type nonlocal elliptic system \[ \begin{cases} -\Delta u_1 -\lambda_1 u_1 & = \mu_1\left( \int_{\mathbb{R}^N}\frac{|u_1 (y)|^{p_1}}{|x-y|^{N-\alpha}}dy\right) |u_1|^{p_1 -2}u_1 \\ & \quad +\frac{\beta r_1}{r_1 +r_2} \left( \int_{\mathbb{R}^N}\frac{| u_2 (y)|^{r_2}}{|x-y|^{N-\alpha}}dy\right) |u_1|^{r_1 -2}u_1, \\ -\Delta u_2 -\lambda_2 u_2 & = \mu_2\left( \int_{\mathbb{R}^N}\frac{| u_2 (y)|^{p_2}}{|x-y|^{N-\alpha}}dy\right) |u_2|^{p_2 -2}u_2 \\ & \quad +\frac{\beta r_2}{r_1 +r_2} \left( \int_{\mathbb{R}^N}\frac{| u_1 (y)|^{r_1}}{|x-y|^{N-\alpha}}dy\right) |u_2|^{r_2 -2}u_2, \\ \int_{\mathbb{R}^N}|u_1|^2 dx & =a_1^2, \quad \int_{\mathbb{R}^N}|u_2|^2 dx=a_2^2, N\geq 3, \end{cases} \] where \(a_1,a_2, \mu_1,\mu_2,\beta >0\), and the constants \(\lambda_1\) and \(\lambda_2\) are unknown and will appear as Lagrange multipliers. First, we prove the existence of two positive solutions when \(N=3\), \(p_1 =p_2 =\alpha =2\) and \(\frac{N+\alpha +2}{N}<r_1, r_2 <\frac{N+\alpha}{N-2}\). Precisely, the first solution is a local minimizer for which we establish the compactness of the minimizing sequences when \(N\geq 3\), \(\alpha \in (0,N)\), \(\frac{N+\alpha}{N}<p_1\), \(p_2<\frac{N+\alpha +2}{N}\) and \(\frac{N+\alpha +2}{N}<r_1\), \(r_2<\frac{N+\alpha}{N-2}\). The second one is obtained by mountain pass argument in the special case \(N=3\), \(p_1 =p_2 =\alpha =2\) and \(\frac{N+\alpha +2}{N}<r_1\), \(r_2<\frac{N+\alpha}{N-2}\). Second, we study the existence of two positive solutions by the compactness of the minimizing sequences and linking type procedure when \(N=5\), \(p_1 =p_2 =\alpha =2\) and \(\frac{N+\alpha}{N}<r_1\), \(r_2<\frac{N+\alpha +2}{N}\). In both the cases, we assume that \(\beta >0\) is sufficiently small. Finally, by using the mountain pass argument, we consider the existence of a positive solution of the system when \(\alpha \in (\max \{0,N-4\},N)\), \(\frac{N+\alpha}{N}<p_1 <\frac{N+\alpha +2}{N}<p_2\), \(r_1 <\frac{N+\alpha}{N-2}\) and \(\frac{N+\alpha +4}{N}<r_2 <\frac{N+\alpha}{N-2}\).

MSC:

35J47 Second-order elliptic systems
35J61 Semilinear elliptic equations
35A15 Variational methods applied to PDEs
Full Text: DOI

References:

[1] Bartsch, T.; Jeanjean, L., Normalized solutions for nonlinear Schrödinger systems, Proc. R. Soc. Edinburgh, 148, 225-242 (2018) · Zbl 1393.35035 · doi:10.1017/S0308210517000087
[2] Bartsch, T.; Jeanjean, L.; Soave, N., Normalized solutions for a system of coupled cubic Schrödinger equations on \(\mathbb{R}^3\), J. Math. Pures. Appl., 106, 583-614 (2016) · Zbl 1347.35107 · doi:10.1016/j.matpur.2016.03.004
[3] Bartsch, T.; Soave, N., A natural constraint approach to normalized solutions on nonlinear Schrödinger equations and systems, J. Funct. Anal., 272, 4998-5037 (2017) · Zbl 1485.35173 · doi:10.1016/j.jfa.2017.01.025
[4] Battaglia, L.; Van Schaftingen, J., Groundstates of the Choquard equations with a sign-changing self-interaction potential, Z. Angew. Math. Phys., 69, 69-86 (2018) · Zbl 1395.35096 · doi:10.1007/s00033-018-0975-0
[5] Cancès, E.; Le Bris, C., On the time-dependent Hartree-Fock equations coupled with a classical nuclear dynamics, Math. Models Methods Appl. Sci., 9, 963-990 (1999) · Zbl 1011.81087 · doi:10.1142/S0218202599000440
[6] Chadam, JM; Glassey, RT, Global existence of solutions to the Cauchy problem for time-dependent Hartree equations, J. Math. Phys., 16, 1122-1130 (1975) · Zbl 0299.35084 · doi:10.1063/1.522642
[7] Cingolani, S.; Clapp, M.; Secchi, S., Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., 63, 233-248 (2012) · Zbl 1247.35141 · doi:10.1007/s00033-011-0166-8
[8] Cingolani, S.; Secchi, S., Multiple \(\mathbb{S}^1 \)-orbits for the Schrödinger-Newton system, Differ. Integr. Equ., 26, 867-884 (2013) · Zbl 1299.35281
[9] Cingolani, S.; Secchi, S.; Squassina, M., Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A, 140, 973-1009 (2010) · Zbl 1215.35146 · doi:10.1017/S0308210509000584
[10] Dalfovo, F.; Giorgini, S.; Pitaevskii, LP; Stringari, S., Theory of bose-einstein condensation in trapped gases, Rev. Mod. Phys., 71, 463-512 (1999) · doi:10.1103/RevModPhys.71.463
[11] Devreese, JT; Alexandrov, AS, Advances in Polaron Physics, Springer Series in Solid-State Sciences (2010), Berlin: Springer, Berlin
[12] Esry, BD; Greene, CH; Burke, JP Jr; Bohn, JL, Hartree-Fock theory for double condensates, Phys. Rev. Lett., 78, 3594-3597 (1997) · doi:10.1103/PhysRevLett.78.3594
[13] Georgiev, V.; Venkov, G., Symmetry and uniqueness of minimizers of Hartree type equations with external Coulomb potential, J. Difier. Equ., 251, 420-438 (2011) · Zbl 1219.35086 · doi:10.1016/j.jde.2011.04.012
[14] Ghimenti, M.; Moroz, V.; Van Schaftingen, J., Least action nodal solutions for the quadratic Choquard equation, Proc. Am. Math. Soc., 145, 737-747 (2017) · Zbl 1355.35079 · doi:10.1090/proc/13247
[15] Ghimenti, M.; Van Schaftingen, J., Nodal solutions for the Choquard equation, J. Funct. Anal., 271, 107-135 (2016) · Zbl 1345.35046 · doi:10.1016/j.jfa.2016.04.019
[16] Ghoussoub, N., Duality and Perturbation Methods in Critical Point Theorey (1993), Cambridge: Cambridge University Press, Cambridge · Zbl 0790.58002 · doi:10.1017/CBO9780511551703
[17] Geng, QP; Dong, YY; Wang, J., Existence and multiplicity of nontrivial solutions of weakly coupled nonlinear Hartree type elliptic system, Z. Angew. Math. Phys., 73, 72, 25 (2022) · Zbl 1486.35178
[18] Gou, TX; Jeanjean, L., Existence and orbital stability of standing waves for nonlinear Schrödinger systems, Nonlinear Anal., 144, 10-22 (2016) · Zbl 1457.35068 · doi:10.1016/j.na.2016.05.016
[19] Gou, TX; Jeanjean, L., Multiple positive normalized solutions for nonlinear Schrödinger systems, Nonlinearity, 31, 2319 (2018) · Zbl 1396.35009 · doi:10.1088/1361-6544/aab0bf
[20] Han, Q., Lin, F.: Elliptic Partial Differetial Equations. Courant Institution of Mathematical Sciences (1997) · Zbl 1051.35031
[21] Ikoma, N., Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions, Adv. Nonlinear Stud, 14, 115-136 (2014) · Zbl 1297.35218 · doi:10.1515/ans-2014-0104
[22] Jeanjean, L., Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28, 1633-59 (1997) · Zbl 0877.35091 · doi:10.1016/S0362-546X(96)00021-1
[23] Jia, H-F; Luo, X., Standing waves with prescribed mass for the coupled Hartree-Fock system with partial confinement, Ann. Mat. Pura Appl., 200, 1487-1516 (2021) · Zbl 1468.35049 · doi:10.1007/s10231-020-01046-6
[24] Jones, KRW, Newtonian quantum gravity, Aust. J. Phys., 48, 1055-1081 (1995) · doi:10.1071/PH951055
[25] Le Bris, C.; Lions, P-L, From atoms to crystals: a mathematical journey, Bull. Am. Math. Soc. (N.S.), 42, 291-363 (2005) · Zbl 1136.81371 · doi:10.1090/S0273-0979-05-01059-1
[26] Lieb, EH, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math., 57, 93-105 (1976) · Zbl 0369.35022 · doi:10.1002/sapm197757293
[27] Lieb, E.H., Loss, M.: Analysis, Second edition, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI (2001) · Zbl 0966.26002
[28] Lieb, EH; Simon, B., The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys., 53, 185-194 (1977) · doi:10.1007/BF01609845
[29] Lieb, EH; Simon, B., The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys., 53, 185-194 (1977) · doi:10.1007/BF01609845
[30] Lions, PL, Some remarks on Hartree equation, Nonlinear Anal., 5, 1245-1256 (1981) · Zbl 0472.35074 · doi:10.1016/0362-546X(81)90016-X
[31] Lions, PL, The concentration-compactness principle in the calculus of variations, The locally compact case, Part II Ann. Inst. Henri Poincaré Anal. Non Linéaire, 1, 223-83 (1984) · Zbl 0704.49004 · doi:10.1016/s0294-1449(16)30422-x
[32] Lions, PL, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys., 109, 33-97 (1987) · Zbl 0618.35111 · doi:10.1007/BF01205672
[33] Ma, L.; Zhao, L., Classiflcation of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195, 455-467 (2010) · Zbl 1185.35260 · doi:10.1007/s00205-008-0208-3
[34] Moroz, IM; Penrose, R.; Tod, P., Spherically-symmetric solutions of the Schrödinger-Newton equations, Class. Quantum Grav., 15, 2733-2742 (1998) · Zbl 0936.83037 · doi:10.1088/0264-9381/15/9/019
[35] Moroz, V.; Van Schaftingen, J., Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265, 153-184 (2013) · Zbl 1285.35048 · doi:10.1016/j.jfa.2013.04.007
[36] Moroz, V.; Van Schaftingen, J., Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367, 6557-657 (2015) · Zbl 1325.35052 · doi:10.1090/S0002-9947-2014-06289-2
[37] Moroz, V.; Van Schaftingen, J., Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., 17, 1550005, 12 (2015) · Zbl 1326.35109 · doi:10.1142/S0219199715500054
[38] Moroz, V.; Van Schaftingen, J., A guide to the Choquard equation, J. Fixed Point Theory Appl., 19, 773-813 (2017) · Zbl 1360.35252 · doi:10.1007/s11784-016-0373-1
[39] Pekar, S., Untersuchung über die Elektronentheorie der Kristalle (1954), Berlin: Akademie Verlag, Berlin · Zbl 0058.45503 · doi:10.1515/9783112649305
[40] Ruiz, D.; Van Schaftingen, J., Odd symmetry of least energy nodal solutions for the Choquard equation, J. Differ. Equ., 264, 1231-1262 (2018) · Zbl 1377.35011 · doi:10.1016/j.jde.2017.09.034
[41] Shibata, M., A new rearrangement inequality and its application for \(L^2\)-constraint minimizing problems, Math. Z., 287, 341-59 (2016) · Zbl 1382.35012 · doi:10.1007/s00209-016-1828-1
[42] Van Schaftingen, J.; Xia, JK, Standing waves with a critical frequency for nonlinear Choquard equations, Nonlinear Anal., 161, 87-107 (2017) · Zbl 1370.35032 · doi:10.1016/j.na.2017.05.014
[43] Wang, J., Existence of normalized solutions for the coupled Hartree-Fock type system, Math. Nachr., 294, 1987-2020 (2021) · Zbl 1525.35106 · doi:10.1002/mana.201900230
[44] Wang, J.; Geng, QP; Zhu, MC, Existence of the normalized solutions to the nonlocal elliptic system with partial confinement, Disc. Cont. Dyn. Sys. A., 39, 2187-2201 (2019) · Zbl 1416.35121 · doi:10.3934/dcds.2019092
[45] Wang, J.; Shi, JP, Standing waves for a coupled nonlinear Hartree equations with nonlocal interaction, Calc. Var. Partial Difierential Equations, 56, 168 (2017) · Zbl 1397.35106 · doi:10.1007/s00526-017-1268-8
[46] Wang, J., Wang, Z.Q.: Existence of odd solutions for the weakly coupled hartree type elliptic system with nonlocal interaction, Preprint (2020)
[47] Wang, T.; Yi, TS, Uniqueness of positive solutions of the Choquard type equations, Appl. Anal., 96, 409-417 (2017) · Zbl 1360.35256 · doi:10.1080/00036811.2016.1138473
[48] Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications (1996) · Zbl 0856.49001
[49] Yang, MB; Wei, YH; Ding, YH, Existence of semiclassical states for a coupled Schrödinger system with potentials and nonlocal nonlinearities, Z. Angew. Math. Phys., 65, 41-68 (2014) · Zbl 1307.35104 · doi:10.1007/s00033-013-0317-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.