×

From atoms to crystals: a mathematical journey. (English) Zbl 1136.81371

Summary: We present an overview of some works on the models of computational quantum chemistry. We examine issues such as the existence of ground states (both for the electronic structure and the configuration of nuclei), the foundations of the models of the crystalline phase, and the macroscopic limits. We emphasize the connections between the physical modelling, the numerical concerns and the mathematical analysis of the problems.

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
35B35 Stability in context of PDEs
35J10 Schrödinger operator, Schrödinger equation
35J60 Nonlinear elliptic equations
35Q40 PDEs in connection with quantum mechanics
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81V55 Molecular physics
82D25 Statistical mechanics of crystals

Software:

CRYSTAL
Full Text: DOI

References:

[1] ALLEN, M.P. and D.J. TILDESLEY (1987) Computer simulation of liquids (Oxford Science Publications). · Zbl 0703.68099
[2] ASHCROFT, N.W. and N. D. MERMIN (1976) Solid-State Physics (Saunders College Publishing). · Zbl 1107.82300
[3] G. Auchmuty and Wenyao Jia, Convergent iterative methods for the Hartree eigenproblem, RAIRO Modél. Math. Anal. Numér. 28 (1994), no. 5, 575 – 610 (English, with English and French summaries). · Zbl 0821.65047
[4] BACH, V., E.H. LIEB, M. LOSS and J.P. SOLOVEJ (1994) There are no unfilled shells in unrestricted Hartree-Fock theory, Phys. Rev. Lett. 72, pp. 2981-2983.
[5] Volker Bach, Error bound for the Hartree-Fock energy of atoms and molecules, Comm. Math. Phys. 147 (1992), no. 3, 527 – 548. · Zbl 0771.46038
[6] BACSKAY, G.B. (1961) A quadratically convergent Hartree-Fock (QC-SCF) method. Application to closed shell systems, Chem. Phys. 61, pp. 385-404.
[7] BALÀZS, N. (1967) Formation of stable molecules within statistical theory of atoms, Phys. Rev., vol. 156, pp. 42-47.
[8] Roger Balian, From microphysics to macrophysics. Vol. I, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1991. Methods and applications of statistical physics; Translated from the French by D. ter Haar and J. F. Gregg. · Zbl 1131.82300
[9] Claude Bardos, François Golse, Alex D. Gottlieb, and Norbert J. Mauser, Mean field dynamics of fermions and the time-dependent Hartree-Fock equation, J. Math. Pures Appl. (9) 82 (2003), no. 6, 665 – 683 (English, with English and French summaries). · Zbl 1029.82022 · doi:10.1016/S0021-7824(03)00023-0
[10] André D. Bandrauk, Michel C. Delfour, and Claude Le Bris , Quantum control: mathematical and numerical challenges, CRM Proceedings & Lecture Notes, vol. 33, American Mathematical Society, Providence, RI, 2003. Papers from the CRM Workshop held at the Université de Montréal, Montréal, QC, October 6 – 11, 2002. · Zbl 1030.00043
[11] Lucie Baudouin, Otared Kavian, and Jean-Pierre Puel, Régularité dans une équation de Schrödinger avec potentiel singulier à distance finie et à l’infini, C. R. Math. Acad. Sci. Paris 337 (2003), no. 11, 705 – 710 (French, with English and French summaries). · Zbl 1032.35048 · doi:10.1016/j.crma.2003.10.011
[12] BAUDOUIN, L., O. KAVIAN, J.-P. PUEL (2005) Regularity for a Schrödinger equation with a potential singular at finite distance and at infinity and application to a bilinear optimal control problem, to appear. · Zbl 1109.35094
[13] BAUDOUIN, L., J.-P. PUEL (2005), in preparation.
[14] Rafael Benguria, Haïm Brézis, and Elliott H. Lieb, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Comm. Math. Phys. 79 (1981), no. 2, 167 – 180. · Zbl 0478.49035
[15] Rafael Benguria and Elliott H. Lieb, The most negative ion in the Thomas-Fermi-von Weizsäcker theory of atoms and molecules, J. Phys. B 18 (1985), no. 6, 1045 – 1059. · doi:10.1088/0022-3700/18/6/006
[16] Rafael D. Benguria and Cecilia Yarur, Sharp condition on the decay of the potential for the absence of a zero-energy ground state of the Schrödinger equation, J. Phys. A 23 (1990), no. 9, 1513 – 1518. · Zbl 0729.35052
[17] Philippe Benilan, Haim Brezis, and Michael G. Crandall, A semilinear equation in \?\textonesuperior (\?^{\?}), Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 4, 523 – 555. · Zbl 0314.35077
[18] Philippe Bénilan, Jerome A. Goldstein, and Gisèle Ruiz Rieder, The Fermi-Amaldi correction in spin polarized Thomas-Fermi theory, Differential equations and mathematical physics (Birmingham, AL, 1990) Math. Sci. Engrg., vol. 186, Academic Press, Boston, MA, 1992, pp. 25 – 37. · Zbl 0756.49022 · doi:10.1016/S0076-5392(08)63373-1
[19] Philippe Bénilan, Jerome A. Goldstein, and Gisèle Ruiz Rieder, A nonlinear elliptic system arising in electron density theory, Comm. Partial Differential Equations 17 (1992), no. 11-12, 2079 – 2092. · Zbl 0765.35038 · doi:10.1080/03605309208820914
[20] X. Blanc, A mathematical insight into ab initio simulations of the solid phase, Mathematical models and methods for ab initio quantum chemistry, Lecture Notes in Chem., vol. 74, Springer, Berlin, 2000, pp. 133 – 158. · Zbl 0991.82001 · doi:10.1007/978-3-642-57237-1_7
[21] Xavier Blanc, Geometry optimization for crystals in Thomas-Fermi type theories of solids, Comm. Partial Differential Equations 26 (2001), no. 3-4, 651 – 696. · Zbl 1022.82017 · doi:10.1081/PDE-100001767
[22] Xavier Blanc and Claude Le Bris, Optimisation de géométrie dans le cadre des théories de type Thomas-Fermi pour les cristaux périodiques, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), no. 6, 551 – 556 (French, with English and French summaries). · Zbl 0932.35004 · doi:10.1016/S0764-4442(00)80060-9
[23] BLANC, X. and C. LE BRIS (2005), Définition d’energies d’interface à partir de modèles atomiques, C. R. Acad. Sci., Série I, in press. · Zbl 1117.74006
[24] X. Blanc and C. Le Bris, Thomas-Fermi type theories for polymers and thin films, Adv. Differential Equations 5 (2000), no. 7-9, 977 – 1032. · Zbl 1223.35263
[25] X. Blanc and C. Le Bris, Periodicity of the infinite-volume ground state of a one-dimensional quantum model, Nonlinear Anal. 48 (2002), no. 6, Ser. A: Theory Methods, 791 – 803. · Zbl 0992.82043 · doi:10.1016/S0362-546X(00)00215-7
[26] X. Blanc, C. Le Bris, and P.-L. Lions, From molecular models to continuum mechanics, Arch. Ration. Mech. Anal. 164 (2002), no. 4, 341 – 381. · Zbl 1028.74005 · doi:10.1007/s00205-002-0218-5
[27] X. Blanc, C. Le Bris, and P.-L. Lions, A definition of the ground state energy for systems composed of infinitely many particles, Comm. Partial Differential Equations 28 (2003), no. 1-2, 439 – 475. · Zbl 1035.82004 · doi:10.1081/PDE-120019389
[28] BLANC, X., C. LE BRIS and P.-L. LIONS (2005) On the energy of microscopic infinite stochastic lattices and their macroscopic limits, in preparation.
[29] Xavier Blanc, Claude Le Bris, and Pierre-Louis Lions, Convergence de modèles moléculaires vers des modèles de mécanique des milieux continus, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 10, 949 – 956 (French, with English and French summaries). · Zbl 0986.74006 · doi:10.1016/S0764-4442(01)01933-4
[30] Xavier Blanc, Claude Le Bris, and Pierre-Louis Lions, Caractérisation des fonctions de \?³ à potentiel newtonien borné, C. R. Math. Acad. Sci. Paris 334 (2002), no. 1, 15 – 21 (French, with English and French summaries). · Zbl 0995.35028 · doi:10.1016/S1631-073X(02)02203-3
[31] Philippe Blanchard and Erwin Brüning, Variational methods in mathematical physics, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992. A unified approach; Translated from the German by Gillian M. Hayes. · Zbl 0756.49023
[32] Philippe Blanchard and Erwin Brüning, Mathematical methods in physics, Revised translation of the 1993 German edition, Progress in Mathematical Physics, vol. 26, Birkhäuser Boston, Inc., Boston, MA, 2003. Distributions, Hilbert space operators, and variational methods. · Zbl 1330.46001
[33] O. Bokanowski and B. Grebert, A decomposition theorem for wave functions in molecular quantum chemistry, Math. Models Methods Appl. Sci. 6 (1996), no. 4, 437 – 466. · Zbl 0867.35075 · doi:10.1142/S021820259600016X
[34] O. Bokanowski and B. Grébert, Deformations of density functions in molecular quantum chemistry, J. Math. Phys. 37 (1996), no. 4, 1553 – 1573. · Zbl 0889.92030 · doi:10.1063/1.531468
[35] BOKANOWSKI, O.M. and B. GREBERT (1998) Utilization of deformations in molecular quantum chemistry and application to density functional theory, Int. J. Quant. Chem. 68, pp. 221-231.
[36] BORNEMANN, F.A., P. NETTERSHEIM and Ch. SCHÜTTE (1996) Quantum-classical molecular dynamics as an approximation to full quantum dynamics, J. Chem. Phys. 105, pp. 1074-1083.
[37] Folkmar A. Bornemann and Christof Schütte, A mathematical investigation of the Car-Parrinello method, Numer. Math. 78 (1998), no. 3, 359 – 376. · Zbl 0887.34026 · doi:10.1007/s002110050316
[38] Folkmar Bornemann, Homogenization in time of singularly perturbed mechanical systems, Lecture Notes in Mathematics, vol. 1687, Springer-Verlag, Berlin, 1998. · Zbl 0902.34051
[39] BOWLER, D. et al. (1997) A comparison of linear scaling tight-binding methods, Model. Simul. Mater. Sci. Eng. 5, pp. 199-202.
[40] BOWLER, D. and M. GILLAN (1999) Density matrices in \(O(N)\) electronic structure calculations, Comp. Phys. Comm. 120, pp. 95-108. · Zbl 0996.81530
[41] BOYS, S.F. (1950) Electronic wavefunctions. I. A general method of calculation for the stationary states of any molecular system, Proc. Roy. Soc. London Ser. A 200, pp. 542-554. · Zbl 0040.28202
[42] BRAIDES, A. and M.S. GELLI (2000) From Discrete to Continuum: A Variational Approach, Lecture Notes SISSA, Trieste.
[43] BRAIDES, A. (2001) From discrete to continuous variational problems: an introduction, Lecture Notes School on Homogenization Techniques and Asymptotic Methods for Problems with Multiple Scales, Torino.
[44] Andrea Braides, Non-local variational limits of discrete systems, Commun. Contemp. Math. 2 (2000), no. 2, 285 – 297. · Zbl 0957.49011 · doi:10.1142/S021919970000013X
[45] Andrea Braides and Maria Stella Gelli, Limits of discrete systems with long-range interactions, J. Convex Anal. 9 (2002), no. 2, 363 – 399. Special issue on optimization (Montpellier, 2000). · Zbl 1031.49022
[46] Andrea Braides and Maria Stella Gelli, Continuum limits of discrete systems without convexity hypotheses, Math. Mech. Solids 7 (2002), no. 1, 41 – 66. · Zbl 1024.74004 · doi:10.1177/1081286502007001229
[47] H. Brezis, Semilinear equations in \?^{\?} without condition at infinity, Appl. Math. Optim. 12 (1984), no. 3, 271 – 282. · Zbl 0562.35035 · doi:10.1007/BF01449045
[48] Eric Cancès, Mireille Defranceschi, Werner Kutzelnigg, Claude Le Bris, and Yvon Maday, Computational quantum chemistry: a primer, Handbook of numerical analysis, Vol. X, Handb. Numer. Anal., X, North-Holland, Amsterdam, 2003, pp. 3 – 270. · Zbl 1070.81534
[49] CANCÈS, E. (2001a) SCF algorithms for Kohn-Sham models with fractional occupation numbers, J. Chem. Phys. 114, pp. 10616-10623.
[50] CANCÈS, E. (2001b) SCF algorithms for Hartree-Fock electronic calculations, in: M. Defranceschi and C. Le Bris, eds., Mathematical models and methods for ab initio quantum chemistry, Lecture Notes in Chemistry 74 (Springer), pp. 17-43.
[51] Eric Cancès and Claude Le Bris, On the perturbation methods for some nonlinear quantum chemistry models, Math. Models Methods Appl. Sci. 8 (1998), no. 1, 55 – 94. · Zbl 1007.81073 · doi:10.1142/S0218202598000044
[52] Eric Cancès and Claude Le Bris, On the time-dependent Hartree-Fock equations coupled with a classical nuclear dynamics, Math. Models Methods Appl. Sci. 9 (1999), no. 7, 963 – 990. · Zbl 1011.81087 · doi:10.1142/S0218202599000440
[53] Eric Cancès and Claude Le Bris, On the convergence of SCF algorithms for the Hartree-Fock equations, M2AN Math. Model. Numer. Anal. 34 (2000), no. 4, 749 – 774. · Zbl 1090.65548 · doi:10.1051/m2an:2000102
[54] CANCÈS, E. and C. LE BRIS (2000b) Can we outperform the DIIS approach for electronic structure calculations, Int. J. Quantum Chem. 79, pp. 82-90.
[55] Eric Cancès, Claude Le Bris, and Mathieu Pilot, Contrôle optimal bilinéaire d’une équation de Schrödinger, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 7, 567 – 571 (French, with English and French summaries). · Zbl 0953.49005 · doi:10.1016/S0764-4442(00)00227-5
[56] E. Cancès, C. Le Bris, B. Mennucci, and J. Tomasi, Integral equation methods for molecular scale calculations in the liquid phase, Math. Models Methods Appl. Sci. 9 (1999), no. 1, 35 – 44. · Zbl 0929.92038 · doi:10.1142/S021820259900004X
[57] CANCÈS, E., B. JOURDAIN and T. LELIÈVRE (2005), Quantum Monte-Carlo simulations of fermions: a mathematical analysis of the fixed-node approximation, submitted to Math. Models Methods Appl. Sci. · Zbl 1098.81095
[58] CAR, R. and M. PARRINELLO (1985) Unified approach for molecular dynamics and density functional theory, Phys. Rev. Lett. 55, pp. 2471-2474.
[59] CARTER, E. and A. WANG (2000) Orbital-Free Kinetic Energy Density Functional Theory, in Theoretical Methods in Condensed Phase Chemistry, S. D. Schwartz, ed., Progress in Theoretical Chemistry and Physics, Kluwer, pp. 117-184.
[60] CATTO, I. and E. PATUREL, in preparation.
[61] Isabelle Catto, Claude Le Bris, and Pierre-Louis Lions, The mathematical theory of thermodynamic limits: Thomas-Fermi type models, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. · Zbl 0938.81001
[62] I. Catto, C. Le Bris, and P.-L. Lions, On the thermodynamic limit for Hartree-Fock type models, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), no. 6, 687 – 760 (English, with English and French summaries). , https://doi.org/10.1016/S0294-1449(00)00059-7 I. Catto, C. Le Bris, and P.-L. Lions, On some periodic Hartree-type models for crystals, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), no. 2, 143 – 190 (English, with English and French summaries). · Zbl 1005.81101 · doi:10.1016/S0294-1449(01)00071-3
[63] I. Catto, C. Le Bris, and P.-L. Lions, On the thermodynamic limit for Hartree-Fock type models, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), no. 6, 687 – 760 (English, with English and French summaries). , https://doi.org/10.1016/S0294-1449(00)00059-7 I. Catto, C. Le Bris, and P.-L. Lions, On some periodic Hartree-type models for crystals, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), no. 2, 143 – 190 (English, with English and French summaries). · Zbl 1005.81101 · doi:10.1016/S0294-1449(01)00071-3
[64] Isabelle Catto, Claude Le Bris, and Pierre-Louis Lions, Limite thermodynamique pour des modèles de type Thomas-Fermi, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 4, 357 – 364 (French, with English and French summaries). · Zbl 0849.35114
[65] Isabelle Catto, Claude Le Bris, and Pierre-Louis Lions, Sur la limite thermodynamique pour des modèles de type Hartree et Hartree-Fock, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 3, 259 – 266 (French, with English and French summaries). · Zbl 0919.35142 · doi:10.1016/S0764-4442(98)80143-2
[66] I. Catto and P.-L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. I. A necessary and sufficient condition for the stability of general molecular systems, Comm. Partial Differential Equations 17 (1992), no. 7-8, 1051 – 1110. , https://doi.org/10.1080/03605309208820878 I. Catto and P.-L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. II. Stability is equivalent to the binding of neutral subsystems, Comm. Partial Differential Equations 18 (1993), no. 1-2, 305 – 354. , https://doi.org/10.1080/03605309308820932 I. Catto and P.-L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. III. Binding of neutral subsystems, Comm. Partial Differential Equations 18 (1993), no. 3-4, 381 – 429. · Zbl 0797.46053 · doi:10.1080/03605309308820935
[67] I. Catto and P.-L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. I. A necessary and sufficient condition for the stability of general molecular systems, Comm. Partial Differential Equations 17 (1992), no. 7-8, 1051 – 1110. , https://doi.org/10.1080/03605309208820878 I. Catto and P.-L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. II. Stability is equivalent to the binding of neutral subsystems, Comm. Partial Differential Equations 18 (1993), no. 1-2, 305 – 354. , https://doi.org/10.1080/03605309308820932 I. Catto and P.-L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. III. Binding of neutral subsystems, Comm. Partial Differential Equations 18 (1993), no. 3-4, 381 – 429. · Zbl 0797.46053 · doi:10.1080/03605309308820935
[68] I. Catto and P.-L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. I. A necessary and sufficient condition for the stability of general molecular systems, Comm. Partial Differential Equations 17 (1992), no. 7-8, 1051 – 1110. , https://doi.org/10.1080/03605309208820878 I. Catto and P.-L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. II. Stability is equivalent to the binding of neutral subsystems, Comm. Partial Differential Equations 18 (1993), no. 1-2, 305 – 354. , https://doi.org/10.1080/03605309308820932 I. Catto and P.-L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. III. Binding of neutral subsystems, Comm. Partial Differential Equations 18 (1993), no. 3-4, 381 – 429. · Zbl 0797.46053 · doi:10.1080/03605309308820935
[69] I. Catto and P.-L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. IV. Binding of neutral systems for the Hartree model, Comm. Partial Differential Equations 18 (1993), no. 7-8, 1149 – 1159. · Zbl 0807.35116 · doi:10.1080/03605309308820967
[70] J. M. Chadam and R. T. Glassey, Global existence of solutions to the Cauchy problem for time-dependent Hartree equations, J. Mathematical Phys. 16 (1975), 1122 – 1130. · Zbl 0299.35084 · doi:10.1063/1.522642
[71] CHAN, G. K. L. et al. (2001) Thomas-Fermi-Dirac-von Weizsäcker models in finite systems, J. Chem. Phys., vol. 114, 2, pp. 631-638.
[72] CHALLACOMBE, M. (2000) Linear scaling computation of the Fock matrix. V. Hierarchical cubature for numerical integration of the exchange-correlation matrix, J. Chem. Phys. 113, pp. 10037-10043.
[73] A. J. Coleman and V. I. Yukalov, Reduced density matrices, Lecture Notes in Chemistry, vol. 72, Springer-Verlag, Berlin, 2000. Coulson’s challenge. · Zbl 0998.81506
[74] H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Springer Study Edition, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987. · Zbl 0619.47005
[75] Gianni Dal Maso, An introduction to \Gamma -convergence, Progress in Nonlinear Differential Equations and their Applications, vol. 8, Birkhäuser Boston, Inc., Boston, MA, 1993. · Zbl 0816.49001
[76] DANIELS, A. and G. SCUSERIA (1999) What is the best alternative to diagonalization of the hamiltonian in large scale semiempirical calculations?, J. Chem. Phys. 110, pp. 1321-1328.
[77] DATTA, S.N. and G. DEVIAH (1988) The minimax technique in relativistic Hartree-Fock calculations, Pramana 30, 5, pp. 393-416.
[78] DEÁK, P., Th. FRAUENHEIM and M. R. PEDERSON, eds. (2000) Computer simulation of materials at atomic level, Wiley, 2000.
[79] Patrick Fischer and Mireille Defranceschi, Numerical solution of the Schrödinger equation in a wavelet basis for hydrogen-like atoms, SIAM J. Numer. Anal. 35 (1998), no. 1, 1 – 12. · Zbl 0924.65110 · doi:10.1137/S0036142995284557
[80] M. Defranceschi and C. Le Bris, Computing a molecule: a mathematical viewpoint, J. Math. Chem. 21 (1997), no. 1, 1 – 30. · Zbl 0890.92026 · doi:10.1023/A:1019197613932
[81] DEFRANCESCHI, M. and C. LE BRIS (1999) Computing a molecule in its environment: a mathematical viewpoint, Int. J. Quant. Chem. 71, pp. 257-250. · Zbl 0890.92026
[82] M. Defranceschi and C. Le Bris , Mathematical models and methods for ab initio quantum chemistry, Lecture Notes in Chemistry, vol. 74, Springer-Verlag, Berlin, 2000. · Zbl 0979.00023
[83] J. P. Desclaux, J. Dolbeault, M. J. Esteban, P. Indelicato, and E. Séré, Computational approaches of relativistic models in quantum chemistry, Handbook of numerical analysis, Vol. X, Handb. Numer. Anal., X, North-Holland, Amsterdam, 2003, pp. 453 – 483. · Zbl 1064.81552
[84] DOLBEAULT, J., M.J. ESTEBAN, E. SÉRÉ and M. VANBREUGEL (2000) Minimization methods for the one-particle Dirac equation, Phys. Rev. Letters 85 (19), pp. 4020-4023.
[85] Jean Dolbeault, Maria J. Esteban, and Eric Séré, Variational characterization for eigenvalues of Dirac operators, Calc. Var. Partial Differential Equations 10 (2000), no. 4, 321 – 347. · Zbl 0968.49025 · doi:10.1007/s005260010321
[86] Jean Dolbeault, Maria J. Esteban, and Eric Séré, On the eigenvalues of operators with gaps. Application to Dirac operators, J. Funct. Anal. 174 (2000), no. 1, 208 – 226. · Zbl 0982.47006 · doi:10.1006/jfan.1999.3542
[87] Jean Dolbeault, Maria J. Esteban, and Eric Séré, Variational methods in relativistic quantum mechanics: new approach to the computation of Dirac eigenvalues, Mathematical models and methods for ab initio quantum chemistry, Lecture Notes in Chem., vol. 74, Springer, Berlin, 2000, pp. 211 – 226. · Zbl 1015.81016 · doi:10.1007/978-3-642-57237-1_10
[88] DOLBEAULT, J., M.J. ESTEBAN and E. SÉRÉ (2003) A variational method for relativistic computations in atomic and molecular physics, Int. J. Quantum. Chemistry 93, pp. 149-155.
[89] Jean Dolbeault, Maria J. Esteban, Michael Loss, and Luis Vega, An analytical proof of Hardy-like inequalities related to the Dirac operator, J. Funct. Anal. 216 (2004), no. 1, 1 – 21. · Zbl 1060.35120 · doi:10.1016/j.jfa.2003.09.010
[90] DOVESI R., R. ORLANDO, C. ROETTI, C. PISANI and V.R. SAUNDERS (2000) The periodic Hartree-Fock method and its implementation in the crystal code, Phys. Stat. Sol. (b) 217, pp. 63-88.
[91] DREIZLER, R.M. and E.K.U. GROSS (1990) Density functional theory (Springer).
[92] Maria J. Esteban and Éric Séré, Stationary states of the nonlinear Dirac equation: a variational approach, Comm. Math. Phys. 171 (1995), no. 2, 323 – 350. · Zbl 0843.35114
[93] Maria J. Esteban and Éric Séré, Existence de solutions stationnaires pour l’équation de Dirac non linéaire et le système de Dirac-Poisson, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 11, 1213 – 1218 (French, with English and French summaries). · Zbl 0815.35103
[94] Maria J. Esteban, Vladimir Georgiev, and Eric Séré, Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations, Calc. Var. Partial Differential Equations 4 (1996), no. 3, 265 – 281. · Zbl 0869.35105 · doi:10.1007/BF01254347
[95] Maria J. Esteban and Eric Séré, Existence and multiplicity of solutions for linear and nonlinear Dirac problems, Partial differential equations and their applications (Toronto, ON, 1995) CRM Proc. Lecture Notes, vol. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 107 – 118. · Zbl 0889.35084
[96] Maria J. Esteban, Vladimir Georgiev, and Eric Séré, Bound-state solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac systems, Lett. Math. Phys. 38 (1996), no. 2, 217 – 220. · Zbl 0862.35096 · doi:10.1007/BF00398323
[97] Maria J. Esteban and Eric Séré, Solutions of the Dirac-Fock equations for atoms and molecules, Comm. Math. Phys. 203 (1999), no. 3, 499 – 530. · Zbl 0938.35149 · doi:10.1007/s002200050032
[98] Maria J. Esteban and Eric Séré, An overview on linear and nonlinear Dirac equations, Discrete Contin. Dyn. Syst. 8 (2002), no. 2, 381 – 397. Current developments in partial differential equations (Temuco, 1999). · Zbl 1162.49307 · doi:10.3934/dcds.2002.8.381
[99] Maria J. Esteban and Eric Sere, Les équations de Dirac-Fock, Séminaire sur les Équations aux Dérivées Partielles, 1997 – 1998, École Polytech., Palaiseau, 1998, pp. Exp. No. V, 10 (French, with French summary). · Zbl 1061.35518
[100] M. J. Esteban and E. Séré, Nonrelativistic limit of the Dirac-Fock equations, Ann. Henri Poincaré 2 (2001), no. 5, 941 – 961. · Zbl 1092.81520 · doi:10.1007/s00023-001-8600-7
[101] Maria J. Esteban and Eric Séré, On some linear and nonlinear eigenvalue problems in relativistic quantum chemistry, Variational and topological methods in the study of nonlinear phenomena (Pisa, 2000) Progr. Nonlinear Differential Equations Appl., vol. 49, Birkhäuser Boston, Boston, MA, 2002, pp. 15 – 27. · Zbl 1040.81100
[102] Maria J. Esteban and Eric Séré, A max-min principle for the ground state of the Dirac-Fock functional, Mathematical results in quantum mechanics (Taxco, 2001) Contemp. Math., vol. 307, Amer. Math. Soc., Providence, RI, 2002, pp. 135 – 141. · Zbl 1029.81032 · doi:10.1090/conm/307/05275
[103] ESTEBAN, M.J. and E. SÉRÉ, Dirac-Fock models for atoms and molecules and related topics. Proceedings ICMP2003. · Zbl 1221.81201
[104] Charles L. Fefferman, The atomic and molecular nature of matter, Rev. Mat. Iberoamericana 1 (1985), no. 1, 1 – 44. · Zbl 0621.60120 · doi:10.4171/RMI/1
[105] Charles Fefferman, The \?-body problem in quantum mechanics, Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S67 – S109. Frontiers of the mathematical sciences: 1985 (New York, 1985). , https://doi.org/10.1002/cpa.3160390707 Charles Fefferman, Addendum to: ”The \?-body problem in quantum mechanics”, Comm. Pure Appl. Math. 40 (1987), no. 4, 523. · doi:10.1002/cpa.3160400406
[106] Charles L. Fefferman and Luis A. Seco, On the energy of a large atom, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 525 – 530. · Zbl 0722.35072
[107] C. Fefferman and L. A. Seco, On the Dirac and Schwinger corrections to the ground-state energy of an atom, Adv. Math. 107 (1994), no. 1, 1 – 185. · Zbl 0820.35113 · doi:10.1006/aima.1994.1060
[108] C. L. Fefferman and L. A. Seco, The mathematics of large atoms, Journées ”Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1995) École Polytech., Palaiseau, 1995, pp. Exp. No. XI, 12. · Zbl 0873.35076
[109] FISCHER, P. and M. DEFRANCESCHI (1994) The wavelet transform: a new mathematical tool for Quantum Chemistry, in: E.S. Kryachko and J.L. Calais, eds., Conceptual Trends in Quantum Chemistry (Kluwer), pp. 227-247.
[110] Søren Fournais, Maria Hoffmann-Ostenhof, Thomas Hoffmann-Ostenhof, and Thomas Østergaard Sørensen, Analyticity of the density of electronic wavefunctions, Ark. Mat. 42 (2004), no. 1, 87 – 106. · Zbl 1068.35118 · doi:10.1007/BF02432911
[111] S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and T. Østergaard Sørensen, On the regularity of the density of electronic wavefunctions, Mathematical results in quantum mechanics (Taxco, 2001) Contemp. Math., vol. 307, Amer. Math. Soc., Providence, RI, 2002, pp. 143 – 148. · Zbl 1041.81104 · doi:10.1090/conm/307/05276
[112] Søren Fournais, Maria Hoffmann-Ostenhof, Thomas Hoffmann-Ostenhof, and Thomas Østergaard Sørensen, The electron density is smooth away from the nuclei, Comm. Math. Phys. 228 (2002), no. 3, 401 – 415. · Zbl 1005.81095 · doi:10.1007/s002200200668
[113] FRENKEL, D. and B. SMIT (1996) Understanding molecular simulation (Academic Press). · Zbl 0889.65132
[114] G. Friesecke, The multiconfiguration equations for atoms and molecules: charge quantization and existence of solutions, Arch. Ration. Mech. Anal. 169 (2003), no. 1, 35 – 71. · Zbl 1035.81069 · doi:10.1007/s00205-003-0252-y
[115] Gero Friesecke and Richard D. James, A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods, J. Mech. Phys. Solids 48 (2000), no. 6-7, 1519 – 1540. The J. R. Willis 60th anniversary volume. · Zbl 0984.74009 · doi:10.1016/S0022-5096(99)00091-5
[116] G. Friesecke and F. Theil, Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice, J. Nonlinear Sci. 12 (2002), no. 5, 445 – 478. · Zbl 1084.74501 · doi:10.1007/s00332-002-0495-z
[117] GALLI, G. (2000) Large scale electronic structure calculations using linear scaling methods, Phys. Stat. Sol (b) 217, pp. 231-249.
[118] Clifford S. Gardner and Charles Radin, The infinite-volume ground state of the Lennard-Jones potential, J. Statist. Phys. 20 (1979), no. 6, 719 – 724. · doi:10.1007/BF01009521
[119] GOEDECKER, S. (1999) Linear scaling electronic structure methods, Reviews of Modern Physics 71, pp. 1085-1123.
[120] D. Gogny and P.-L. Lions, Hartree-Fock theory in nuclear physics, RAIRO Modél. Math. Anal. Numér. 20 (1986), no. 4, 571 – 637. · Zbl 0607.35078
[121] Jerome A. Goldstein and Gisèle Ruiz Rieder, Thomas-Fermi theory with an external magnetic field, J. Math. Phys. 32 (1991), no. 10, 2907 – 2917. · doi:10.1063/1.529084
[122] Gisèle Ruiz Goldstein, Jerome A. Goldstein, and Wenyao Jia, Thomas-Fermi theory with magnetic fields and the Fermi-Amaldi correction, Differential Integral Equations 8 (1995), no. 6, 1305 – 1316. · Zbl 0863.49032
[123] Stephen J. Gustafson and Israel Michael Sigal, Mathematical concepts of quantum mechanics, Universitext, Springer-Verlag, Berlin, 2003. · Zbl 1033.81004
[124] George A. Hagedorn, Crossing the interface between chemistry and mathematics, Notices Amer. Math. Soc. 43 (1996), no. 3, 297 – 299. · Zbl 1044.00514
[125] George A. Hagedorn, A time dependent Born-Oppenheimer approximation, Comm. Math. Phys. 77 (1980), no. 1, 1 – 19. · Zbl 0448.70013
[126] HEHRE, W.J., L. RADOM, P.v.R. SCHLEYER, and J.A. POPLE (1986) Ab initio molecular orbital theory (Wiley).
[127] Maria Hoffmann-Ostenhof, Thomas Hoffmann-Ostenhof, and Thomas Østergaard Sørensen, Electron wavefunctions and densities for atoms, Ann. Henri Poincaré 2 (2001), no. 1, 77 – 100. · Zbl 0985.81133 · doi:10.1007/PL00001033
[128] W. Hunziker and I. M. Sigal, The quantum \?-body problem, J. Math. Phys. 41 (2000), no. 6, 3448 – 3510. · Zbl 0981.81026 · doi:10.1063/1.533319
[129] Rafael José Iório Jr. and Dan Marchesin, On the Schrödinger equation with time-dependent electric fields, Proc. Roy. Soc. Edinburgh Sect. A 96 (1984), no. 1-2, 117 – 134. · Zbl 0573.47005 · doi:10.1017/S0308210500020527
[130] JAY, L.O., H. KIM, Y. SAAD and J.R. CHELIKOWSKI (1999) Electronic structure calculations for plane wave codes without diagonalization, Comp. Phys. Comm. 118, pp. 21-30. · Zbl 1001.65038
[131] JONES, R.O. and O. GUNNARSSON (1989) The density functional formalism, its applications and prospects, Rev. Mod. Phys. 61, pp. 689-746.
[132] Tosio Kato, On the eigenfunctions of many-particle systems in quantum mechanics, Comm. Pure Appl. Math. 10 (1957), 151 – 177. · Zbl 0077.20904 · doi:10.1002/cpa.3160100201
[133] Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. · Zbl 0836.47009
[134] KITTEL, Ch. (1996) Introduction to Solid State Physics, 7th Ed., Wiley.
[135] KLAHN, B. and W.A. BINGEL (1977) The convergence of the Rayleigh-Ritz method in Quantum Chemistry, Theor. Chim. Acta 44, pp. 26-43.
[136] KOHN, W. (1999) Nobel Lecture: Electronic structure of matter-wave functions and density functionals, Rev. Mod. Phys. 71, pp. 1253-1266.
[137] KOUTECKÝ, J. and V. BONACIC (1971) On convergence difficulties in the iterative Hartree-Fock procedure, J. Chem. Phys. 55, pp. 2408-2413.
[138] KUDIN, K. and G.E. SCUSERIA (1998) A fast multipole algorithm for the efficient treatment of the Coulomb problem in electronic structure calculations of periodic systems with Gaussian orbitals, Chem. Phys. Lett. 289, pp. 611-616.
[139] KUDIN, K., G.E. SCUSERIA and E. CANCÈS (2002) A black-box self-consistent field convergence algorithm: one step closer, J. Chem. Phys. 116, pp. 8255-8261.
[140] LE BRIS, C. (1993) Quelques problèmes mathématiques en chimie quantique moléculaire, Ph.D. thesis, École Polytechnique.
[141] C. Le Bris , Handbook of numerical analysis. Vol. X, Handbook of Numerical Analysis, X, North-Holland, Amsterdam, 2003. Special volume: computational chemistry. · Zbl 1052.81001
[142] C. Le Bris, Some results on the Thomas-Fermi-Dirac-von Weizsäcker model, Differential Integral Equations 6 (1993), no. 2, 337 – 353. · Zbl 0828.49024
[143] Claude Le Bris, A general approach for multiconfiguration methods in quantum molecular chemistry, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), no. 4, 441 – 484 (English, with English and French summaries). · Zbl 0837.35005
[144] Claude Le Bris, On the spin polarized Thomas-Fermi model with the Fermi-Amaldi correction, Nonlinear Anal. 25 (1995), no. 7, 669 – 679. · Zbl 0914.35112 · doi:10.1016/0362-546X(94)00177-J
[145] André D. Bandrauk, Michel C. Delfour, and Claude Le Bris , Quantum control: mathematical and numerical challenges, CRM Proceedings & Lecture Notes, vol. 33, American Mathematical Society, Providence, RI, 2003. Papers from the CRM Workshop held at the Université de Montréal, Montréal, QC, October 6 – 11, 2002. · Zbl 1030.00043
[146] LE BRIS, C. (2005) Computational chemistry from the perspective of numerical analysis, to appear in Acta Numerica. · Zbl 1119.65390
[147] LESTER, W.A., Jr. (1997-2002) Recent advances in quantum Monte Carlo methods, 2 volumes, World Scientific.
[148] LEVINE, I.N. (1991) Quantum Chemistry (Prentice Hall).
[149] Mathieu Lewin, The multiconfiguration methods in quantum chemistry: Palais-Smale condition and existence of minimizers, C. R. Math. Acad. Sci. Paris 334 (2002), no. 4, 299 – 304 (English, with English and French summaries). · Zbl 1155.81382 · doi:10.1016/S1631-073X(02)02252-5
[150] Mathieu Lewin, Solutions of the multiconfiguration equations in quantum chemistry, Arch. Ration. Mech. Anal. 171 (2004), no. 1, 83 – 114. · Zbl 1063.81102 · doi:10.1007/s00205-003-0281-6
[151] LIEB, E.H. (1984) Bound on the maximum negative ionization of atoms and molecules, Phys. Rev. A 29, pp. 3018-3028.
[152] Elliott H. Lieb, Kinetic energy bounds and their application to the stability of matter, Schrödinger operators (Sønderborg, 1988) Lecture Notes in Phys., vol. 345, Springer, Berlin, 1989, pp. 371 – 382. · Zbl 0698.35134 · doi:10.1007/3-540-51783-9_24
[153] Elliott H. Lieb, The stability of matter: from atoms to stars, Bull. Amer. Math. Soc. (N.S.) 22 (1990), no. 1, 1 – 49. · Zbl 0698.35135
[154] LIEB, E.H. (1985) Density functionals for Coulomb systems, in: R.M. Dreizler and J. da Providencia, eds., Density Functional Methods in Physics (Plenum, New York), pp. 31-80.
[155] Elliott H. Lieb and Barry Simon, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys. 53 (1977), no. 3, 185 – 194.
[156] Elliott H. Lieb and Barry Simon, The Thomas-Fermi theory of atoms, molecules and solids, Advances in Math. 23 (1977), no. 1, 22 – 116. · Zbl 0938.81568 · doi:10.1016/0001-8708(77)90108-6
[157] Elliott H. Lieb, A lower bound for Coulomb energies, Phys. Lett. A 70 (1979), no. 5-6, 444 – 446. · doi:10.1016/0375-9601(79)90358-X
[158] LIEB, E.H. and S. OXFORD (1981) Improved lower bound on the indirect Coulomb energy, Int. J. Quant. Chem., vol. 19, pp. 427-439.
[159] Elliott H. Lieb, Thomas-Fermi and related theories of atoms and molecules, Rev. Modern Phys. 53 (1981), no. 4, 603 – 641. , https://doi.org/10.1103/RevModPhys.53.603 Elliott H. Lieb, Erratum: ”Thomas-Fermi and related theories of atoms and molecules”, Rev. Modern Phys. 54 (1982), no. 1, 311. · Zbl 1049.81679 · doi:10.1103/RevModPhys.54.311
[160] LIEB, E.H. (1983) Density functionals for Coulomb systems, Int. J. Quantum Chem. 24, pp. 243-277.
[161] LIEB, E.H. (1984) Bound of the maximum negative ionization of atoms and molecules, Phys. Rev. A 29, pp. 3018-3028.
[162] LIEB, E.H. and W. THIRRING (1976) Inequalities for the moment of the eigenvalues of the Schrödinger hamiltonian and their relation to Sobolev inequalities, in Studies in Mathematical Physics, E.H. Lieb, B. Simon and A. Wightman, eds., Princeton Univ. Press, pp. 269-303. · Zbl 0342.35044
[163] LIEB, E.H. and W. THIRRING (1986) Universal nature of van der Waals forces for Coulomb systems, Phys. Rev. A 34, pp. 40-46.
[164] P.-L. Lions, Hartree-Fock and related equations, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. IX (Paris, 1985 – 1986) Pitman Res. Notes Math. Ser., vol. 181, Longman Sci. Tech., Harlow, 1988, pp. 304 – 333. · Zbl 0693.35047
[165] Pierre-Louis Lions and Andrew Majda, Equilibrium statistical theory for nearly parallel vortex filaments, Comm. Pure Appl. Math. 53 (2000), no. 1, 76 – 142. , https://doi.org/10.1002/(SICI)1097-0312(200001)53:13.3.CO;2-C · Zbl 1041.76038
[166] P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys. 109 (1987), no. 1, 33 – 97. · Zbl 0618.35111
[167] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145 – 201. , https://doi.org/10.4171/RMI/6 P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. II, Rev. Mat. Iberoamericana 1 (1985), no. 2, 45 – 121. · Zbl 0704.49006 · doi:10.4171/RMI/12
[168] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109 – 145 (English, with French summary). P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 223 – 283 (English, with French summary). P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109 – 145 (English, with French summary). P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 223 – 283 (English, with French summary). · Zbl 0541.49009
[169] LIONS, P.-L. (1996) Remarks on mathematical modelling in quantum chemistry, Computational Methods in Applied Sciences, Wiley, pp. 22-23.
[170] Wing Kam Liu, Dong Qian, and Mark F. Horstemeyer, Preface [Special issue on multiple scale methods for nanoscale mechanics and materials], Comput. Methods Appl. Mech. Engrg. 193 (2004), no. 17-20, iii – v.
[171] MCWEENY, R. (1992) Methods of molecular quantum mechanics, 2nd edition (Academic Press).
[172] Yvon Maday and Gabriel Turinici, Error bars and quadratically convergent methods for the numerical simulation of the Hartree-Fock equations, Numer. Math. 94 (2003), no. 4, 739 – 770. · Zbl 1027.81043
[173] MARCH, N.H. (1992) Electron density theory of atoms and molecules (Academic Press).
[174] W. J. Ventevogel and B. R. A. Nijboer, On the configuration of systems of interacting particles with minimum potential energy per particle, Phys. A 98 (1979), no. 1-2, 274 – 288. · doi:10.1016/0378-4371(79)90178-X
[175] W. J. Ventevogel and B. R. A. Nijboer, On the configuration of systems of interacting particles with minimum potential energy per particle, Phys. A 99 (1979), no. 3, 569 – 580. · doi:10.1016/0378-4371(79)90072-4
[176] ORDEJON, P., D.A. DRABOLD and R.M. MARTIN (1995) Linear system-size scaling methods for electronic structure calculations, Phys. Rev. B 51, pp. 1456-1476.
[177] S. Pagano and R. Paroni, A simple model for phase transitions: from the discrete to the continuum problem, Quart. Appl. Math. 61 (2003), no. 1, 89 – 109. · Zbl 1068.74050 · doi:10.1090/qam/1955225
[178] PARR, R. G. and W. YANG (1989) Density functional theory of atoms and molecules (Oxford University Press).
[179] Eric Paturel, Solutions of the Dirac-Fock equations without projector, Ann. Henri Poincaré 1 (2000), no. 6, 1123 – 1157. · Zbl 1072.81523 · doi:10.1007/PL00001024
[180] PAYNE, P. W. (1979) Density functionals in unrestricted Hartree-Fock theory, J. Chem. Phys. 71, pp. 490-496.
[181] PISANI, C., ed. (1996) Quantum mechanical ab initio calculation of the properties of crystalline materials, Lecture Notes in Chemistry 67, Springer.
[182] PULAY, P. (1982) Improved SCF convergence acceleration, J. Comp. Chem. 3, pp. 556-560.
[183] RAABE, D. (1998) Computational materials science, Wiley.
[184] Charles Radin, The ground state for soft disks, J. Statist. Phys. 26 (1981), no. 2, 365 – 373. · doi:10.1007/BF01013177
[185] Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. Michael Reed and Barry Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. Michael Reed and Barry Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. Michael Reed and Barry Simon, Methods of modern mathematical physics. III, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. Scattering theory. Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. Michael Reed and Barry Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. · Zbl 0308.47002
[186] SAUNDERS, V. R. and I.H. HILLIER (1973) A “level-shifting” method for converging closed shell Hartree-Fock wavefunctions, Int. J. Quantum Chem. 7, pp. 699-705.
[187] Martin Schechter, Operator methods in quantum mechanics, North-Holland Publishing Co., New York-Amsterdam, 1981. · Zbl 0456.47012
[188] SCUSERIA, G.E. (1999) Linear scaling density functional calculations with Gaussian orbitals, J. Phys. Chem. A 103, pp. 4782-4790.
[189] Jan Philip Solovej, Universality in the Thomas-Fermi-von Weizsäcker model of atoms and molecules, Comm. Math. Phys. 129 (1990), no. 3, 561 – 598. · Zbl 0708.35071
[190] Jan Philip Solovej, Proof of the ionization conjecture in a reduced Hartree-Fock model, Invent. Math. 104 (1991), no. 2, 291 – 311. · Zbl 0732.35066 · doi:10.1007/BF01245077
[191] Jan Philip Solovej, The size of atoms in Hartree-Fock theory, Partial differential equations and mathematical physics (Copenhagen, 1995; Lund, 1995) Progr. Nonlinear Differential Equations Appl., vol. 21, Birkhäuser Boston, Boston, MA, 1996, pp. 321 – 332. · Zbl 0846.35115
[192] SPRUCH, L. (1991) Pedagogic notes on Thomas-Fermi theory (and on some improvements): atoms, stars and the stability of bulk matter, Rev. Mod. Phys. 63, pp. 151-209.
[193] STANTON, R.E. (1981) The existence and cure of intrinsic divergence in closed shell SCF calculations, J. Chem. Phys. 75, pp. 3426-3432.
[194] STANTON, R.E. (1981) Intrinsic convergence in closed-shell SCF calculations. A general criterion, J. Chem. Phys. 75, pp. 5416-5422.
[195] E. B. Starikov, On the convergence of the Hartree-Fock self-consistency procedure, Molecular Phys. 78 (1993), no. 2, 285 – 305. · doi:10.1080/00268979300100241
[196] Michael Struwe, Variational methods, Springer-Verlag, Berlin, 1990. Applications to nonlinear partial differential equations and Hamiltonian systems. · Zbl 0746.49010
[197] SWIRLESS, B. (1935) The relativistic self-consistent field, Proc. Roy. Soc. A 152, pp. 625-649. · JFM 61.1574.02
[198] SWIRLESS, B. (1936) The relativistic interaction of two electrons in the self-consistent field method, Proc. Roy. Soc. A 157, pp. 680-696. · Zbl 0015.28301
[199] SZABO, A. and N.S. OSTLUND (1982) Modern quantum chemistry: an introduction to advanced electronic structure theory (MacMillan).
[200] James D. Talman, Minimax principle for the Dirac equation, Phys. Rev. Lett. 57 (1986), no. 9, 1091 – 1094. · doi:10.1103/PhysRevLett.57.1091
[201] Walter Thirring, A course in mathematical physics. Vol. I. Classical dynamical systems, Springer-Verlag, New York-Vienna, 1978. Translated from the German by Evans M. Harrell. Walter Thirring, Lehrbuch der mathematischen Physik. Band 2, Springer-Verlag, Vienna, 1978 (German). Klassische Feldtheorie. Walter Thirring, A course in mathematical physics. Vol. 2, Springer-Verlag, New York-Vienna, 1979. Classical field theory; Translated from the German by Evans M. Harrell. Walter Thirring, A course in mathematical physics. Vol. 3, Springer-Verlag, New York-Vienna, 1981. Quantum mechanics of atoms and molecules; Translated from the German by Evans M. Harrell; Lecture Notes in Physics, 141. Walter Thirring, Lehrbuch der mathematischen Physik. 4, Springer-Verlag, Vienna, 1980 (German). Quantenmechanik grosser Systeme. [Quantum mechanics of large systems]. Walter Thirring, A course in mathematical physics. Vol. 4, Springer-Verlag, New York-Vienna, 1983. Quantum mechanics of large systems; Translated from the German by Evans M. Harrell.
[202] Herschel Rabitz, Gabriel Turinici, and Eric Brown, Control of quantum dynamics: concepts, procedures and future prospects, Handbook of numerical analysis, Vol. X, Handb. Numer. Anal., X, North-Holland, Amsterdam, 2003, pp. 833 – 887. · Zbl 1066.81015
[203] VENTEVOGEL, W.J. (1978) On the configuration of a one-dimensional system of interacting particles with minimum potential energy per particle, Physica, vol. 92A, p. 343.
[204] YSERENTANT, H. (2004) On the electronic Schrödinger equation, preprint. · Zbl 1062.35100
[205] Harry Yserentant, On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives, Numer. Math. 98 (2004), no. 4, 731 – 759. · Zbl 1062.35100 · doi:10.1007/s00211-003-0498-1
[206] YSERENTANT, H. (2004) Sparse grid spaces for the numerical solution of the electronic Schrödinger equation, Numer. Math., submitted. · Zbl 1084.65125
[207] ZHISLIN, G.M. (1960) Discussion of the spectrum of Schrödinger operators for systems of many particles (Russian), Tr. Moskov. Mat. Obshch. 9, pp. 81-120.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.