×

Standing waves with a critical frequency for nonlinear Choquard equations. (English) Zbl 1370.35032

Summary: We study the nonlocal Choquard equation \[ - \varepsilon^2 \Delta u_\varepsilon + V u_\varepsilon = (I_\alpha \ast | u_\varepsilon |^p) | u_\varepsilon |^{p - 2} u_\varepsilon \quad \text{ in } \mathbb{R}^N \] where \(N \geq 1\), \(I_\alpha\) is the Riesz potential of order \(\alpha \in(0, N)\) and \(\varepsilon > 0\) is a parameter. When the nonnegative potential \(V \in C(\mathbb{R}^N)\) achieves \(0\) with a homogeneous behavior or on the closure of an open set but remains bounded away from \(0\) at infinity, we show the existence of groundstate solutions for small \(\varepsilon > 0\) and exhibit the concentration behavior as \(\varepsilon \rightarrow 0\).

MSC:

35B25 Singular perturbations in context of PDEs
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35J20 Variational methods for second-order elliptic equations
35J61 Semilinear elliptic equations
35R09 Integro-partial differential equations

References:

[1] Alves, C. O.; Nóbrega, A. B.; Yang, M., Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Differential Equations, 55, 3 (2016), art. 48, 28 p · Zbl 1347.35097
[2] Alves, C. O.; Yang, M., Existence of semiclassical groundstate solutions for a generalized Choquard equation, J. Differential Equations, 257, 11, 4133-4164 (2014) · Zbl 1309.35036
[3] Alves, C. O.; Yang, M., Multiplicity and concentration of solutions for a quasilinear Choquard equation, J. Math. Phys., 55, 6, 061502 (2014) · Zbl 1293.35352
[4] Ambrosetti, A.; Badiale, M.; Cingolani, S., Semiclassical states of nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 140, 3, 285-300 (1997) · Zbl 0896.35042
[5] Ambrosetti, A.; Malchiodi, A., (Perturbation Methods and Semilinear Elliptic Problems on \(R^N\). Perturbation Methods and Semilinear Elliptic Problems on \(R^N\), Progress in Mathematics, vol. 240 (2006), Birkhäuser: Birkhäuser Basel) · Zbl 1115.35004
[6] Ambrosetti, A.; Malchiodi, A., Concentration phenomena for nonlinear Schrödinger equations: recent results and new perspectives, (Perspectives in Nonlinear Partial Differential Equations. Perspectives in Nonlinear Partial Differential Equations, Contemp. Math., vol. 446 (2007), Amer. Math. Soc.: Amer. Math. Soc. Providence, R.I.), 19-30 · Zbl 1200.35106
[7] Ambrosetti, A.; Malchiodi, A.; Ruiz, D., Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Anal. Math., 98, 317-348 (2006) · Zbl 1142.35082
[8] Bonheure, D.; Van Schaftingen, J., Bound state solutions for a class of nonlinear Schrödinger equations, Rev. Mat. Iberoam., 24, 1, 297-351 (2008) · Zbl 1156.35084
[9] Byeon, J.; Wang, Z.-Q., Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 165, 4, 295-316 (2002) · Zbl 1022.35064
[10] Byeon, J.; Wang, Z.-Q., Standing waves with a critical frequency for nonlinear Schrödinger equations. II, Calc. Var. Partial Differential Equations, 18, 2, 207-219 (2003) · Zbl 1073.35199
[11] Cingolani, S.; Secchi, S.; Squassina, M., Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A, 140, 5, 973-1009 (2010) · Zbl 1215.35146
[12] Del Pino, M.; Felmer, P. L., Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal., 149, 1, 245-265 (1997) · Zbl 0887.35058
[13] Diósi, L., Gravitation and quantum-mechanical localization of macro-objects, Phys. Lett. A, 105, 4-5, 199-202 (1984)
[14] Evans, L. C., (Partial Differential Equations. Partial Differential Equations, Graduate Studies in Mathematics, vol. 19 (2010), American Mathematical Society: American Mathematical Society Providence, R.I.) · Zbl 1194.35001
[15] Felmer, P. L.; Mayorga-Zambrano, J., Multiplicity and concentration for the nonlinear Schrödinger equation with critical frequency, Nonlinear Anal., 66, 1, 151-169 (2007) · Zbl 1124.35083
[16] Felmer, P. L.; Torres, J. J., Semi-classical limit for the one dimensional nonlinear Schrödinger equation, Commun. Contemp. Math., 4, 3, 481-512 (2002) · Zbl 1044.34013
[17] Floer, A.; Weinstein, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69, 3, 397-408 (1986) · Zbl 0613.35076
[18] Jones, K. R.W., Gravitational self-energy as the litmus of reality, Modern Phys. Lett. A, 10, 8, 657-667 (1995)
[19] Jones, K. R.W., Newtonian quantum gravity, Aust. J. Phys., 48, 6, 1055-1082 (1995)
[20] Krantz, S. G.; Parks, H. R., The Implicit Function Theorem: History, Theory, and Applications (2002), Birkhäuser: Birkhäuser Boston, Mass. · Zbl 1012.58003
[21] Lieb, E. H., Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math., 57, 2, 93-105 (1976/77) · Zbl 0369.35022
[22] Lieb, E. H.; Loss, M., (Analysis. Analysis, Graduate Studies in Mathematics, vol. 14 (1997), American Mathematical Society: American Mathematical Society Providence, R.I.)
[23] Lions, P.-L., The Choquard equation and related questions, Nonlinear Anal., 4, 6, 1063-1072 (1980) · Zbl 0453.47042
[24] Lions, P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 2, 109-145 (1984) · Zbl 0541.49009
[25] Lü, D., Existence and concentration of solutions for a nonlinear Choquard equation, Mediterr. J. Math., 12, 3, 839-850 (2015) · Zbl 1322.35031
[26] Moroz, I. M.; Penrose, R.; Tod, P., Spherically-symmetric solutions of the Schrödinger-Newton equations, Classical Quantum Gravity, 15, 9, 2733-2742 (1998) · Zbl 0936.83037
[27] Moroz, V.; Van Schaftingen, J., Semiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentials, Calc. Var. Partial Differential Equations, 37, 1-2, 1-27 (2010) · Zbl 1186.35038
[28] Moroz, V.; Van Schaftingen, J., Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265, 153-184 (2013) · Zbl 1285.35048
[29] Moroz, V.; Van Schaftingen, J., Semi-classical states for the Choquard equation, Calc. Var. Partial Differential Equations, 52, 1-2, 199-235 (2015) · Zbl 1309.35029
[30] Moroz, V.; Van Schaftingen, J., A guide to the Choquard equation, J. Fixed Point Theory Appl., 19, 1, 773-813 (2017) · Zbl 1360.35252
[31] Oh, Y.-G., Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class \((V)_a\), Comm. Partial Differential Equations, 13, 12, 1499-1519 (1988) · Zbl 0702.35228
[32] Pekar, S., Untersuchungen über die Elektronentheorie der Kristalle (1954), Akademie-Verlag: Akademie-Verlag Berlin · Zbl 0058.45503
[33] Penrose, R., On gravity’s role in quantum state reduction, Gen. Relativity Gravitation, 28, 5, 581-600 (1996) · Zbl 0855.53046
[34] Rabinowitz, P. H., On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, 2, 270-291 (1992) · Zbl 0763.35087
[35] Secchi, S., A note on Schrödinger-Newton systems with decaying electric potential, Nonlinear Anal., 72, 9-10 (2010) · Zbl 1187.35254
[36] Szulkin, A.; Weth, T., The method of Nehari manifold, (Handbook of Nonconvex Analysis and Applications (2010), Int. Press: Int. Press Somerville, Mass.), 597-632 · Zbl 1218.58010
[37] Van Schaftingen, J.; Xia, J., Choquard equations under confining external potentials, NoDEA Nonlinear Differential Equations Appl., 24, 1, 1-24 (2017) · Zbl 1378.35144
[38] Wang, X., On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153, 2, 229-244 (1993) · Zbl 0795.35118
[39] Wei, J.; Winter, M., Strongly interacting bumps for the Schrödinger-Newton equations, J. Math. Phys., 50, 1, 012905 (2009) · Zbl 1189.81061
[40] Willem, M., (Minimax Theorems. Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24 (1996), Birkhäuser: Birkhäuser Boston, Mass.) · Zbl 0856.49001
[41] Yang, M.; Ding, Y., Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part, Commun. Pure Appl. Anal., 12, 2, 771-783 (2013) · Zbl 1270.35218
[42] Yang, M.; Zhang, J.; Zhang, Y., Multi-peak solutions for nonlinear Choquard equation with a general nonlinearity, Commun. Pure Appl. Anal., 2, 493-512 (2017) · Zbl 1364.35027
[43] Zeidler, E., (Applied Functional Analysis: Main Principles and their Applications. Applied Functional Analysis: Main Principles and their Applications, Applied Mathematical Sciences, vol. 109 (1995), Springer: Springer New York) · Zbl 0834.46003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.