×

Deciphering the maximal transcendentality principle via bootstrap. (English) Zbl 1531.81226

Summary: We prove the principle of maximal transcendentality for a class of form factors, including the general two-loop minimal form factors, the two-loop three-point form factor of \(\operatorname{tr}(F^2)\), and the two-loop four-point form factor of \(\operatorname{tr}(F^3)\). Our proof is based on a recently developed bootstrap method using the representation of master integral expansions, together with some unitarity cuts that are universal in general gauge theories. The maximally transcendental parts of the two-loop four-gluon form factor of \(\operatorname{tr}(F^3)\) are obtained for the first time in both planar \(\mathcal{N} = 4\) SYM and pure YM theories. This form factor can be understood as the Higgs-plus-four-gluon amplitudes involving a dimension-seven operator in the Higgs effective theory. In this case, we find that the maximally transcendental part of the \(\mathcal{N} = 4\) SYM result is different from that of pure YM, and the discrepancy is due to the gluino-loop contributions in \(\mathcal{N} = 4\) SYM. In contrast, the scalar-loop contributions have no maximally transcendental parts. Thus, the maximal transcendentality principle still holds for the form factor results in \(\mathcal{N} = 4\) SYM and QCD, after a proper identification of the fundamental quarks and adjoint gluinos as \(n_f\rightarrow4N_c\). This seems to be the first example of the maximally transcendental principle that involves fermion-loop contributions. As another intriguing observation, we find that the four-point form factor of the half-BPS \(\operatorname{tr}(\phi^3)\) operator is precisely a building block in the form factor of \(\operatorname{tr}(F^3)\).

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory
81V05 Strong interaction, including quantum chromodynamics
81T18 Feynman diagrams
81U05 \(2\)-body potential quantum scattering theory

References:

[1] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B435 (1995) 59 [hep-ph/9409265] [INSPIRE]. · Zbl 1049.81644
[2] A.V. Kotikov and L.N. Lipatov, DGLAP and BFKL equations in the N = 4 supersymmetric gauge theory, Nucl. Phys. B661 (2003) 19 [Erratum ibid.685 (2004) 405] [hep-ph/0208220] [INSPIRE]. · Zbl 1040.81062
[3] A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko and V.N. Velizhanin, Three loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model, Phys. Lett. B595 (2004) 521 [Erratum ibid.632 (2006) 754] [hep-th/0404092] [INSPIRE]. · Zbl 1247.81486
[4] S. Moch, J.A.M. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B688 (2004) 101 [hep-ph/0403192] [INSPIRE]. · Zbl 1109.81374
[5] Brandhuber, A.; Travaglini, G.; Yang, G., Analytic two-loop form factors in N = 4 SYM, JHEP, 05, 082 (2012) · Zbl 1348.81400
[6] Gehrmann, T.; Jaquier, M.; Glover, EWN; Koukoutsakis, A., Two-Loop QCD Corrections to the Helicity Amplitudes for H → 3 partons, JHEP, 02, 056 (2012) · Zbl 1309.81327
[7] Brandhuber, A.; Penante, B.; Travaglini, G.; Wen, C., The last of the simple remainders, JHEP, 08, 100 (2014)
[8] Brandhuber, A.; Kostacinska, M.; Penante, B.; Travaglini, G., Higgs amplitudes from \(\mathcal{N} = 4\) super Yang-Mills theory, Phys. Rev. Lett., 119 (2017)
[9] Jin, Q.; Yang, G., Analytic Two-Loop Higgs Amplitudes in Effective Field Theory and the Maximal Transcendentality Principle, Phys. Rev. Lett., 121 (2018)
[10] Brandhuber, A.; Kostacinska, M.; Penante, B.; Travaglini, G., Tr(F^3) supersymmetric form factors and maximal transcendentality Part I:\( \mathcal{N} = 4\) super Yang-Mills, JHEP, 12, 076 (2018) · Zbl 1405.81146
[11] Brandhuber, A.; Kostacinska, M.; Penante, B.; Travaglini, G., Tr(F^3) supersymmetric form factors and maximal transcendentality Part II: \(0 < \mathcal{N} < 4\) super Yang-Mills, JHEP, 12, 077 (2018) · Zbl 1405.81147
[12] Jin, Q.; Yang, G., Hidden Analytic Relations for Two-Loop Higgs Amplitudes in QCD, Commun. Theor. Phys., 72 (2020) · Zbl 1451.81372
[13] Jin, Q.; Yang, G., Two-Loop QCD Corrections to the Higgs plus three-parton amplitudes with Top Mass Correction, JHEP, 02, 169 (2020)
[14] Jin, Q.; Ren, K.; Yang, G., Two-Loop anomalous dimensions of QCD operators up to dimension-sixteen and Higgs EFT amplitudes, JHEP, 04, 180 (2021)
[15] Banerjee, P.; Dhani, PK; Ravindran, V., Two loop QCD corrections for the process Pseudo-scalar Higgs → 3 partons, JHEP, 10, 067 (2017)
[16] Li, Y.; von Manteuffel, A.; Schabinger, RM; Zhu, HX, Soft-virtual corrections to Higgs production at N^3LO, Phys. Rev. D, 91 (2015)
[17] Li, Y.; Zhu, HX, Bootstrapping Rapidity Anomalous Dimensions for Transverse-Momentum Resummation, Phys. Rev. Lett., 118 (2017)
[18] Dixon, LJ, The Principle of Maximal Transcendentality and the Four-Loop Collinear Anomalous Dimension, JHEP, 01, 075 (2018)
[19] Agarwal, B.; von Manteuffel, A.; Panzer, E.; Schabinger, RM, Four-loop collinear anomalous dimensions in QCD and N = 4 super Yang-Mills, Phys. Lett. B, 820 (2021) · Zbl 07414502
[20] Henn, JM; Korchemsky, GP; Mistlberger, B., The full four-loop cusp anomalous dimension in \(\mathcal{N} = 4\) super Yang-Mills and QCD, JHEP, 04, 018 (2020) · Zbl 1436.81136
[21] Huber, T.; von Manteuffel, A.; Panzer, E.; Schabinger, RM; Yang, G., The four-loop cusp anomalous dimension from the N = 4 Sudakov form factor, Phys. Lett. B, 807 (2020) · Zbl 1473.81114
[22] Yang, G., On-shell methods for form factors in \(\mathcal{N} = 4\) SYM and their applications, Sci. China Phys. Mech. Astron., 63 (2020)
[23] F. Wilczek, Decays of Heavy Vector Mesons Into Higgs Particles, Phys. Rev. Lett.39 (1977) 1304 [INSPIRE].
[24] M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys.30 (1979) 711 [INSPIRE].
[25] S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B359 (1991) 283 [INSPIRE].
[26] A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B264 (1991) 440 [INSPIRE].
[27] B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C69 (1995) 77 [hep-ph/9505225] [INSPIRE].
[28] Guo, Y.; Wang, L.; Yang, G., Bootstrapping a Two-Loop Four-Point Form Factor, Phys. Rev. Lett., 127 (2021)
[29] K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B192 (1981) 159 [INSPIRE].
[30] F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett. B100 (1981) 65 [INSPIRE].
[31] Smirnov, AV; Petukhov, AV, The Number of Master Integrals is Finite, Lett. Math. Phys., 97, 37 (2011) · Zbl 1216.81076
[32] A.H. Mueller, On the Asymptotic Behavior of the Sudakov Form-factor, Phys. Rev. D20 (1979) 2037 [INSPIRE].
[33] J.C. Collins, Algorithm to Compute Corrections to the Sudakov Form-factor, Phys. Rev. D22 (1980) 1478 [INSPIRE].
[34] A. Sen, Asymptotic Behavior of the Sudakov Form-Factor in QCD, Phys. Rev. D24 (1981) 3281 [INSPIRE].
[35] L. Magnea and G.F. Sterman, Analytic continuation of the Sudakov form-factor in QCD, Phys. Rev. D42 (1990) 4222 [INSPIRE].
[36] G.P. Korchemsky and A.V. Radyushkin, Loop Space Formalism and Renormalization Group for the Infrared Asymptotics of QCD, Phys. Lett. B171 (1986) 459 [INSPIRE].
[37] G.P. Korchemsky, Asymptotics of the Altarelli-Parisi-Lipatov Evolution Kernels of Parton Distributions, Mod. Phys. Lett. A4 (1989) 1257 [INSPIRE].
[38] S. Catani, The Singular behavior of QCD amplitudes at two loop order, Phys. Lett. B427 (1998) 161 [hep-ph/9802439] [INSPIRE].
[39] Bern, Z.; Dixon, LJ; Smirnov, VA, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D, 72 (2005)
[40] Anastasiou, C.; Bern, Z.; Dixon, LJ; Kosower, DA, Planar amplitudes in maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett., 91 (2003)
[41] D.A. Kosower, All order collinear behavior in gauge theories, Nucl. Phys. B552 (1999) 319 [hep-ph/9901201] [INSPIRE].
[42] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B425 (1994) 217 [hep-ph/9403226] [INSPIRE]. · Zbl 1049.81644
[43] D.A. Kosower and P. Uwer, One loop splitting amplitudes in gauge theory, Nucl. Phys. B563 (1999) 477 [hep-ph/9903515] [INSPIRE]. · Zbl 1097.81883
[44] Z. Bern, V. Del Duca, W.B. Kilgore and C.R. Schmidt, The infrared behavior of one loop QCD amplitudes at next-to-next-to leading order, Phys. Rev. D60 (1999) 116001 [hep-ph/9903516] [INSPIRE].
[45] Drummond, JM; Henn, J.; Korchemsky, GP; Sokatchev, E., Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B, 815, 142 (2009) · Zbl 1194.81316
[46] Bern, Z., The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D, 78 (2008)
[47] G. Lin, G. Yang and S. Zhang, Color-Kinematics Duality and Dual Conformal Symmetry for A Four-loop Form Factor in N = 4 SYM, arXiv:2112.09123 [INSPIRE].
[48] Britto, R.; Cachazo, F.; Feng, B., Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B, 725, 275 (2005) · Zbl 1178.81202
[49] Dixon, LJ; Drummond, JM; Henn, JM, Bootstrapping the three-loop hexagon, JHEP, 11, 023 (2011) · Zbl 1306.81092
[50] Dixon, LJ; Drummond, JM; von Hippel, M.; Pennington, J., Hexagon functions and the three-loop remainder function, JHEP, 12, 049 (2013) · Zbl 1342.81159
[51] Dixon, LJ; von Hippel, M., Bootstrapping an NMHV amplitude through three loops, JHEP, 10, 065 (2014)
[52] Golden, J.; Spradlin, M., A Cluster Bootstrap for Two-Loop MHV Amplitudes, JHEP, 02, 002 (2015)
[53] Drummond, JM; Papathanasiou, G.; Spradlin, M., A Symbol of Uniqueness: The Cluster Bootstrap for the 3-Loop MHV Heptagon, JHEP, 03, 072 (2015)
[54] Caron-Huot, S.; Dixon, LJ; McLeod, A.; von Hippel, M., Bootstrapping a Five-Loop Amplitude Using Steinmann Relations, Phys. Rev. Lett., 117 (2016)
[55] Dixon, LJ; Drummond, J.; Harrington, T.; McLeod, AJ; Papathanasiou, G.; Spradlin, M., Heptagons from the Steinmann Cluster Bootstrap, JHEP, 02, 137 (2017) · Zbl 1377.81197
[56] Drummond, J.; Foster, J.; Gürdoğan, O.; Papathanasiou, G., Cluster adjacency and the four-loop NMHV heptagon, JHEP, 03, 087 (2019) · Zbl 1414.81251
[57] Caron-Huot, S.; Dixon, LJ; Dulat, F.; von Hippel, M.; McLeod, AJ; Papathanasiou, G., Six-Gluon amplitudes in planar \(\mathcal{N} = 4\) super-Yang-Mills theory at six and seven loops, JHEP, 08, 016 (2019) · Zbl 1421.81136
[58] Dixon, LJ; Liu, Y-T, Lifting Heptagon Symbols to Functions, JHEP, 10, 031 (2020) · Zbl 1456.81428
[59] S. He, Z. Li and C. Zhang, Two-loop octagons, algebraic letters and \(\overline{Q}\) equations, Phys. Rev. D101 (2020) 061701 [arXiv:1911.01290] [INSPIRE].
[60] S. He, Z. Li and C. Zhang, The symbol and alphabet of two-loop NMHV amplitudes from \(\overline{Q}\) equations, JHEP03 (2021) 278 [arXiv:2009.11471] [INSPIRE].
[61] Golden, J.; McLeod, AJ, The two-loop remainder function for eight and nine particles, JHEP, 06, 142 (2021)
[62] Dixon, LJ; McLeod, AJ; Wilhelm, M., A Three-Point Form Factor Through Five Loops, JHEP, 04, 147 (2021)
[63] Dixon, LJ; Gurdogan, O.; McLeod, AJ; Wilhelm, M., Bootstrapping a stress-tensor form factor through eight loops, JHEP, 07, 153 (2022) · Zbl 1522.81617
[64] Alday, LF; Maldacena, JM, Gluon scattering amplitudes at strong coupling, JHEP, 06, 064 (2007)
[65] Maldacena, J.; Zhiboedov, A., Form factors at strong coupling via a Y-system, JHEP, 11, 104 (2010) · Zbl 1294.81121
[66] Brandhuber, A.; Spence, B.; Travaglini, G.; Yang, G., Form Factors in N = 4 Super Yang-Mills and Periodic Wilson Loops, JHEP, 01, 134 (2011) · Zbl 1214.81146
[67] Gao, Z.; Yang, G., Y-system for form factors at strong coupling in AdS_5and with multi-operator insertions in AdS_3, JHEP, 06, 105 (2013) · Zbl 1342.83366
[68] Hodges, A., Eliminating spurious poles from gauge-theoretic amplitudes, JHEP, 05, 135 (2013) · Zbl 1342.81291
[69] L.J. Mason and D. Skinner, Dual Superconformal Invariance, Momentum Twistors and Grassmannians, JHEP11 (2009) 045 [arXiv:0909.0250] [INSPIRE].
[70] Caron-Huot, S., Superconformal symmetry and two-loop amplitudes in planar N = 4 super Yang-Mills, JHEP, 12, 066 (2011) · Zbl 1306.81082
[71] Wilhelm, M., Amplitudes, Form Factors and the Dilatation Operator in \(\mathcal{N} = 4\) SYM Theory, JHEP, 02, 149 (2015) · Zbl 1388.81427
[72] Loebbert, F.; Nandan, D.; Sieg, C.; Wilhelm, M.; Yang, G., On-Shell Methods for the Two-Loop Dilatation Operator and Finite Remainders, JHEP, 10, 012 (2015) · Zbl 1388.81390
[73] Brandhuber, A.; Kostacinska, M.; Penante, B.; Travaglini, G.; Young, D., The SU(2|3) dynamic two-loop form factors, JHEP, 08, 134 (2016) · Zbl 1390.81306
[74] Loebbert, F.; Sieg, C.; Wilhelm, M.; Yang, G., Two-Loop SL(2) Form Factors and Maximal Transcendentality, JHEP, 12, 090 (2016) · Zbl 1390.81607
[75] Lin, G.; Yang, G., Non-planar form factors of generic local operators via on-shell unitarity and color-kinematics duality, JHEP, 04, 176 (2021)
[76] Henn, JM, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett., 110 (2013)
[77] W.L. van Neerven, Infrared Behavior of On-shell Form-factors in a N = 4 Supersymmetric Yang-Mills Field Theory, Z. Phys. C30 (1986) 595 [INSPIRE].
[78] K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Strong coupling constant with flavor thresholds at four loops in the MS scheme, Phys. Rev. Lett.79 (1997) 2184 [hep-ph/9706430] [INSPIRE].
[79] K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to \(O\left({\alpha}_s^3\right)\) and their connection to low-energy theorems, Nucl. Phys. B510 (1998) 61 [hep-ph/9708255] [INSPIRE].
[80] Eden, B.; Heslop, P.; Korchemsky, GP; Sokatchev, E., The super-correlator/super-amplitude duality: Part I, Nucl. Phys. B, 869, 329 (2013) · Zbl 1262.81196
[81] Brandhuber, A.; Gurdogan, O.; Mooney, R.; Travaglini, G.; Yang, G., Harmony of Super Form Factors, JHEP, 10, 046 (2011) · Zbl 1303.81111
[82] Banerjee, P.; Dhani, PK; Mahakhud, M.; Ravindran, V.; Seth, S., Finite remainders of the Konishi at two loops in \(\mathcal{N} = 4\) SYM, JHEP, 05, 085 (2017) · Zbl 1380.81202
[83] Sever, A.; Tumanov, AG; Wilhelm, M., Operator Product Expansion for Form Factors, Phys. Rev. Lett., 126 (2021) · Zbl 1476.81061
[84] A. Sever, A.G. Tumanov and M. Wilhelm, An Operator Product Expansion for Form Factors II. Born level, JHEP10 (2021) 071 [arXiv:2105.13367] [INSPIRE]. · Zbl 1476.81061
[85] A. Sever, A.G. Tumanov and M. Wilhelm, An Operator Product Expansion for Form Factors III. Finite Coupling and Multi-Particle Contributions, JHEP03 (2022) 128 [arXiv:2112.10569] [INSPIRE]. · Zbl 1522.81660
[86] Lin, G.; Yang, G.; Zhang, S., Three-Loop Color-Kinematics Duality: A 24-Dimensional Solution Space Induced by New Generalized Gauge Transformations, Phys. Rev. Lett., 127 (2021)
[87] Lin, G.; Yang, G.; Zhang, S., Full-color three-loop three-point form factors in \(\mathcal{N} = 4\) SYM, JHEP, 03, 061 (2022) · Zbl 1522.81644
[88] T. Gehrmann and E. Remiddi, Two loop master integrals for γ^∗→ 3 jets: The Planar topologies, Nucl. Phys. B601 (2001) 248 [hep-ph/0008287] [INSPIRE].
[89] T. Gehrmann and E. Remiddi, Two loop master integrals for γ^∗→ 3 jets: The Nonplanar topologies, Nucl. Phys. B601 (2001) 287 [hep-ph/0101124] [INSPIRE].
[90] V.P. Nair, A Current Algebra for Some Gauge Theory Amplitudes, Phys. Lett. B214 (1988) 215 [INSPIRE].
[91] Abreu, S.; Ita, H.; Moriello, F.; Page, B.; Tschernow, W.; Zeng, M., Two-Loop Integrals for Planar Five-Point One-Mass Processes, JHEP, 11, 117 (2020)
[92] Canko, DD; Papadopoulos, CG; Syrrakos, N., Analytic representation of all planar two-loop five-point Master Integrals with one off-shell leg, JHEP, 01, 199 (2021)
[93] Chicherin, D.; Sotnikov, V.; Zoia, S., Pentagon functions for one-mass planar scattering amplitudes, JHEP, 01, 096 (2022) · Zbl 1521.81440
[94] Abreu, S.; Ita, H.; Page, B.; Tschernow, W., Two-loop hexa-box integrals for non-planar five-point one-mass processes, JHEP, 03, 182 (2022) · Zbl 1522.81263
[95] Goncharov, AB; Spradlin, M.; Vergu, C.; Volovich, A., Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett., 105 (2010)
[96] R.H. Boels, Q. Jin and H. Lüo, Efficient integrand reduction for particles with spin, arXiv:1802.06761 [INSPIRE].
[97] Q. Jin and H. Lüo, Analytic Form of the Three-loop Four-gluon Scattering Amplitudes in Yang-Mills Theory, arXiv:1910.05889 [INSPIRE].
[98] S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier, B. Page and M. Zeng, Two-Loop Four-Gluon Amplitudes from Numerical Unitarity, Phys. Rev. Lett.119 (2017) 142001 [arXiv:1703.05273] [INSPIRE].
[99] S. Abreu, F. Febres Cordero, H. Ita, B. Page and M. Zeng, Planar Two-Loop Five-Gluon Amplitudes from Numerical Unitarity, Phys. Rev. D97 (2018) 116014 [arXiv:1712.03946] [INSPIRE].
[100] Kosower, DA; Larsen, KJ, Maximal Unitarity at Two Loops, Phys. Rev. D, 85 (2012)
[101] Larsen, KJ; Zhang, Y., Integration-by-parts reductions from unitarity cuts and algebraic geometry, Phys. Rev. D, 93 (2016)
[102] Ita, H., Two-loop Integrand Decomposition into Master Integrals and Surface Terms, Phys. Rev. D, 94 (2016)
[103] Georgoudis, A.; Larsen, KJ; Zhang, Y., Azurite: An algebraic geometry based package for finding bases of loop integrals, Comput. Phys. Commun., 221, 203 (2017) · Zbl 1498.81007
[104] G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B44 (1972) 189 [INSPIRE].
[105] Smirnov, AV; Chuharev, FS, FIRE6: Feynman Integral REduction with Modular Arithmetic, Comput. Phys. Commun., 247 (2020) · Zbl 1510.81007
[106] J. Klappert, F. Lange, P. Maierhöfer and J. Usovitsch, Integral reduction with Kira 2.0 and finite field methods, Comput. Phys. Commun.266 (2021) 108024 [arXiv:2008.06494] [INSPIRE]. · Zbl 1523.81078
[107] Del Duca, V.; Duhr, C.; Marzucca, R.; Verbeek, B., The analytic structure and the transcendental weight of the BFKL ladder at NLL accuracy, JHEP, 10, 001 (2017) · Zbl 1383.81289
[108] C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, J. Symb. Comput.33 (2002) 1 [cs/0004015] [INSPIRE]. · Zbl 1017.68163
[109] Hidding, M., DiffExp, a Mathematica package for computing Feynman integrals in terms of one-dimensional series expansions, Comput. Phys. Commun., 269 (2021) · Zbl 1518.65150
[110] T. Gehrmann and E. Remiddi, Analytic continuation of massless two loop four point functions, Nucl. Phys. B640 (2002) 379 [hep-ph/0207020] [INSPIRE]. · Zbl 0997.81070
[111] Duhr, C., Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP, 08, 043 (2012) · Zbl 1397.16028
[112] Smirnov, AV, FIESTA4: Optimized Feynman integral calculations with GPU support, Comput. Phys. Commun., 204, 189 (2016) · Zbl 1378.65075
[113] Borowka, S., pySecDec: a toolbox for the numerical evaluation of multi-scale integrals, Comput. Phys. Commun., 222, 313 (2018) · Zbl 07693053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.