×

The number of master integrals is finite. (English) Zbl 1216.81076

Summary: For a fixed Feynman graph one can consider Feynman integrals with all possible powers of propagators and try to reduce them, by linear relations, to a finite subset of integrals, the so-called master integrals. Up to now, there are numerous examples of reduction procedures resulting in a finite number of master integrals for various families of Feynman integrals. However, up to now it was just an empirical fact that the reduction procedure results in a finite number of irreducible integrals. It this paper we prove that the number of master integrals is always finite.

MSC:

81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials

Software:

Reduze; AIR

References:

[1] ’t Hooft G., Veltman M.: Regularization and renormalization of Gauge fields. Nucl. Phys. B 44, 189 (1972) · doi:10.1016/0550-3213(72)90279-9
[2] Bollini C.G., Giambiagi J.J.: On spectral-function sum rules. Nuovo Cim. 12B, 20 (1972) · Zbl 0099.22804
[3] Smirnov V.A.: Feynman Integral Calculus, pp. 283. Springer, Berlin (2006) · Zbl 1111.81003
[4] Chetyrkin K.G., Tkachov F.V.: Integration by parts: The algorithm to calculate beta functions in 4 loops. Nucl. Phys. B 192, 159 (1981) · doi:10.1016/0550-3213(81)90199-1
[5] Laporta S.: High-precision calculation of multi-loop Feynman integrals by difference equations. Int. J. Mod. Phys. A 15, 5087 (2000) [hep-ph/0102033] · Zbl 0973.81082
[6] Gehrmann T., Remiddi E.: Two-loop master integrals for {\(\gamma\)}* 3 jets: the planar topologies. Nucl. Phys. B 601, 248 (2001) [hep-ph/0008287] · doi:10.1016/S0550-3213(01)00057-8
[7] Gehrmann T., Remiddi E.: Two-loop master integrals for {\(\gamma\)}* 3 jets: the non-planar topologies. Nucl. Phys. B 601, 287 (2001) [hep-ph/0101124] · doi:10.1016/S0550-3213(01)00074-8
[8] Anastasiou C., Lazopoulos A.: Automatic integral reduction for higher order perturbative calculations. JHEP 0407, 046 (2004) [hep-ph/0404258] · doi:10.1088/1126-6708/2004/07/046
[9] Smirnov A.V.: Algorithm FIRE - Feynman integral reduction. JHEP 0810, 107 (2008) [0807.3243] · Zbl 1245.81033 · doi:10.1088/1126-6708/2008/10/107
[10] Studerus, C.: Reduze - Feynman integral reduction in C+. [0912.2546] · Zbl 1219.81133
[11] Smirnov, A.V., Smirnov, V.A.: On the reduction of Feynman integrals to master integrals. PoS ACAT 2007:085 [0707.3993]
[12] Lee R.N.: Group structure of the integration-by-part identities and its application to the reduction of multiloop integrals. JHEP 0807, 031 (2008) [0804.3008] · doi:10.1088/1126-6708/2008/07/031
[13] Coutinho, S.C.: A primer of algebraic D-modules. In: London Mathematical Society Student Texts, vol. 33. Cambridge University Press, Cambridge (1995) · Zbl 0848.16019
[14] Kapusta J.I., Gale C.: Finite-Temperature Field Theory Principles and Applications, 2nd edn. Cambridge University Press, Cambridge (2006) · Zbl 1121.70002
[15] Schröder Y.: Loops for hot QCD. Nucl. Phys. Proc. Suppl. B 183, 296 (2008) [arXiv:0807.0500 [hep-ph]] · doi:10.1016/j.nuclphysbps.2008.09.120
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.